平面向量
a
=(3,-4),
b
=(2,-
8
3
),
c
=(2,y),
a
c

(Ⅰ)計算:4
a
-3
b
;  
(Ⅱ)求向量
c
的坐標; 
(Ⅲ)求
b
c
夾角.
考點:平面向量數(shù)量積的運算
專題:計算題
分析:(Ⅰ)利用向量坐標運算計算即可.
(Ⅱ)利用
a
c
=0,得出關(guān)于y的方程求解
(Ⅲ)利用cos<
b
,
c
>=
b
c
|
b
||
c
|
,得出夾角余弦值,再求出夾角.
解答: 解:(I)4
a
-3
b
=4(3,-4)-3(2,-
8
3
)=(12,-16)-(6,-8)=(6,-8).
(Ⅱ)因為
a
c
,所以
a
c
=0,即6-4y=0,y=
3
2
,所以
c
=(2,
3
2
).
(Ⅲ)cos<
b
c
>=
b
c
|
b
||
c
|
,
b
c
=4-4=0,
b
c
夾角為90°.
點評:本題考查向量的坐標運算,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知AB=2,BC=3,∠ABC=60°AH⊥BC于H,M為AH的中點,若
AM
AB
AC
,則λ+μ的值是( 。
A、
1
3
B、
2
3
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,AB=AC,F(xiàn)為BB1上一點,D為BC的中點,且BF=2BD.
(1)當
BF
FB1
為何值時,對于AD上任意一點總有EF⊥FC1;
(2)若A1B1=3,C1F與平面AA1B1B所成角的正弦值為
4
10
15
,當
BF
FB1
在(1)所給的值時,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx.
(Ⅰ)求f(x)的最小正周期和最小值;
(Ⅱ)若α∈(
π
4
π
2
)且f(α+
8
)=
2-
6
4
,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體ABCD-A1B1C1D1中,AB=BC=1,BB1=2,連接A1C,BD.
(1)求三棱錐A1-BCD的體積.
(2)求證:A1C⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

中心在原點,焦點在x軸上的橢圓C的焦距為2,兩準線間的距離為10.設(shè)A(5,0),過點A作直線l交橢圓C于P,Q兩點,過點P作x軸的垂線交橢圓C于另一點S.
(1)求橢圓C的方程;
(2)求證直線SQ過x軸上一定點B;
(3)若過點A作直線與橢圓C只有一個公共點D,求過B,D兩點,且以AD為切線的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,E、F分別是BC,DC的中點,若
AB
=
a
AD
=
b
,試用
a
,
b
,表示
DE
、
BF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD是個邊長為2的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,Q是PA的中點.
(Ⅰ)證明:PC∥平面BDQ;
(Ⅱ)求三棱錐C-BDQ的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,O為坐標原點,點P(-1,
2
2
)在橢圓上,且橢圓的離心率為
2
2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,且與橢圓交于不同的兩點A、B.當
OA
OB
=λ,且
2
3
≤λ≤
3
4
,求△AOB面積S的取值范圍.

查看答案和解析>>

同步練習冊答案