如圖,在側(cè)棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F是平面B1C1E與直線AA1的交點(diǎn).

(1)證明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1與平面B1C1EF所成的角的正弦值.

(1)見解析  (2)

解析(1)證明:①因為C1B1∥A1D1,C1B1?平面ADD1A1,
所以C1B1∥平面A1D1DA.
又因為平面B1C1EF∩平面A1D1DA=EF,
所以C1B1∥EF,所以A1D1∥EF.
②因為BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.
又因為B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,
所以B1C1⊥BA1.
在矩形ABB1A1中,F是AA1的中點(diǎn),
tan∠A1B1F=tan∠AA1B=,
即∠A1B1F=∠AA1B,
故BA1⊥B1F.
所以BA1⊥平面B1C1EF.
(2)解:設(shè)BA1與B1F交點(diǎn)為H,連接C1H.
由(1)知BA1⊥平面B1C1EF,
所以∠BC1H是BC1與平面B1C1EF所成的角.
在矩形AA1B1B中,AB=,AA1=2,得BH=.
在Rt△BHC1中,BC1=2,BH=,得
sin∠BC1H==.
所以BC1與平面B1C1EF所成角的正弦值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中, ,的中點(diǎn),△是等腰三角形,的中點(diǎn),上一點(diǎn).

(1)若∥平面,求
(2)求直線和平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐中,平面,底面是直角梯形,
.

(1)求證:平面;
(2)求證:平面;
(3)若的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,,,,是棱的中點(diǎn).

(1)求證:平面;
(2)求證:平面
(3)在棱上是否存在一點(diǎn),使得平面平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在三棱柱中,,,點(diǎn)分別是的中點(diǎn).
 
(1)求證:平面∥平面;
(2)求證:平面⊥平面;
(3)若,求異面直線所成的角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分別在線段上,B1E=3EC1,AC=BC=CC1=4.

(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點(diǎn)F,滿足EF//平面A1ABB1,若存在,請指出點(diǎn)F的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=2BC,∠ABC=120°,E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△A′DE,使平面A′DE⊥平面BCD,F為線段A′C的中點(diǎn).

(1)求證:BF∥平面A′DE;
(2)設(shè)M為線段DE的中點(diǎn),求直線FM與平面A′DE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐的底面是平行四邊形,,,,且.若中點(diǎn),為線段上的點(diǎn),且.

(1)求證:平面
(2)求PC與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在矩形ABCD中,AB=a,BC=a,以對角線AC為折線將直角三角形ABC向上翻折到三角形APC的位置(B點(diǎn)與P點(diǎn)重合),P點(diǎn)在平面ACD上的射影恰好落在邊AD上的H處.

(1)求證:PA⊥CD;
(2)求直線PC與平面ACD所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案