已知f(x)=ax2-3x+6,不等式f(x)>4的解集為{x|x<1或x>b}.
(Ⅰ)求出a,b;
(Ⅱ)解不等式
f(x)
x
>x.
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)由題意,1、b是方程ax2-3x+6=4的兩個(gè)根,結(jié)合根與系數(shù)的關(guān)系,求出a,b;
(Ⅱ)把不等式
f(x)
x
>x化為
x2-3x+6
x
>x,整理求解,即得不等式的解集.
解答: 解:(Ⅰ)根據(jù)題意,∵f(x)>4,
∴ax2-3x+6>4,
即ax2-3x+2>0;
又1、b是方程ax2-3x+2=0的兩個(gè)根,
1+b=
3
a
1•b=
2
a

解得
a=1
b=2
;
(Ⅱ)∵
f(x)
x
>x,
x2-3x+6
x
>x,
-3x+6
x
>0;
解得0<x<2,
∴不等式的解集是{x|0<x<2}.
點(diǎn)評(píng):本題考查了不等式的解法與應(yīng)用問題,解題時(shí)應(yīng)根據(jù)一元二次不等式與對(duì)應(yīng)的一元二次方程,結(jié)合根與系數(shù)的關(guān)系進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,D是直角△ABC斜邊BC上一點(diǎn),若AB=AD,AC=
3
DC,則sin∠ABD=( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次考試中,從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,學(xué)生成績(jī)的莖葉圖如圖所示,成績(jī)不小于90分為及格.
(Ⅰ)從每班抽取的學(xué)生中各隨機(jī)抽取一人,求至少有一人及格的概率
(Ⅱ)從甲班10人中隨機(jī)抽取一人,乙班10人中隨機(jī)抽取兩人,三人中及格人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為空集,命題q:方程(a-1)x2+(3-a)y2=(a-1)(3-a)表示焦點(diǎn)在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:x2+y2-2y=24,直線l:x+y=11,l上一點(diǎn)A的橫坐標(biāo)為a,過點(diǎn)A作圓M的兩條切線l1,l2,切點(diǎn)分別為B,C.
(1)當(dāng)a=0時(shí),求直線l1,l2的方程;
(2)當(dāng)直線 l1,l2互相垂直時(shí),求a的值;
(3)是否存在點(diǎn)A,使得
AB
AC
=-2?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幼兒園小班的美術(shù)課上,老師帶領(lǐng)小朋友們用水彩筆為美術(shù)本上如右圖所示的兩個(gè)大小不同的氣球涂色,要求一個(gè)氣球只涂一種顏色,兩個(gè)氣球分別涂不同的顏色.該班的小朋友牛,F(xiàn)可用的有暖色系水彩筆紅色、橙色各一支,冷色系水彩筆綠色,藍(lán)色,紫色各一支.
(1)牛牛從他可用的五支水彩筆中隨機(jī)的取出兩支按老師要求為氣球涂色,問兩個(gè)氣球同為冷色的概率是多大?
(2)一般情況下,老師發(fā)出開始指令到涂色活動(dòng)全部結(jié)束需要10分鐘.牛牛至少需要2分鐘完成該項(xiàng)任務(wù).老師在發(fā)出開始指令1分鐘后隨時(shí)可能來到牛牛身邊查看涂色情況.問當(dāng)老師來到牛牛身邊時(shí)牛牛已經(jīng)完成任務(wù)的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+a
x+b
(a、b為常數(shù)).
(1)若b=1,解不等式f(x-1)<0;
(2)若a=1,當(dāng)x∈[-1,2]時(shí),f(x)>
-1
(x+b)2
恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P為函數(shù)f(x)=
1
2
x2+2ax與g(x)=3a2lnx+2b(a>0)圖象的公共點(diǎn),以P為切點(diǎn)可作直線l與兩曲線都相切,則實(shí)數(shù)b的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且a0-a1+a2-a3+…+a8-a9=39,則實(shí)數(shù)m的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案