【題目】如圖,在四棱錐中,底面,,,點為棱的一點.

(Ⅰ)若點為棱的中點,證明:

(Ⅱ)若,求二面角的余弦值.

【答案】(Ⅰ)詳見解析(Ⅱ)

【解析】

1)以點A為原點建立空間直角坐標(biāo)系,利用向量法能證明BEDC;2)求出平面EAB的法向量,平面ABP的法向量,利用向量法能求出二面角E-AB-P的余弦值.

(Ⅰ)因為底面,底面,底面

所以:,,又,

所以:,兩兩互相垂直,

以點為原點,建立如圖所示的空間直角坐標(biāo)系:

可得,,,

因為點為棱的中點,得,

,,

,

所以;

(Ⅱ),,

不妨設(shè),

,得,

解得,

設(shè)為平面的法向量,

,即,

不妨令,可得為平面的一個法向量,

易知平面的一個法向量,

,

二面角是銳角,所以余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,橢圓上的點到左焦點的距離的最大值為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線與橢圓交于、兩點.在軸上是否存在點,使得,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中, , , , , .

1)若,求直線與平面所成角的正弦值;

2)若二面角的大小為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是橢圓)的左、右焦點,過軸的垂線與交于、

兩點, 軸交于點, ,且, 為坐標(biāo)原點.

(1)求的方程;

(2)設(shè)為橢圓上任一異于頂點的點, 、的上、下頂點,直線、分別交軸于點、.若直線與過點的圓切于點.試問: 是否為定值?若是,求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線的左頂點、右焦點,過的直線的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點.若,則的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng),求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

(3)已知, , 均為正實數(shù),且,求證 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種化工產(chǎn)品,該產(chǎn)品若以每噸10萬元的價格銷售,每年可售出1000噸,若將該產(chǎn)品每噸分價格上漲,則每年的銷售數(shù)量將減少,其中m為正常數(shù),銷售的總金額為y萬元.

1)當(dāng)時,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售總金額最大?

2)當(dāng)時,若能使銷售總金額比漲價前增加,試設(shè)定m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)(萬元)滿足假設(shè)該產(chǎn)品產(chǎn)銷平衡,試根據(jù)上述資料

(Ⅰ)要使工廠有盈利,產(chǎn)量x應(yīng)控制在什么范圍內(nèi);

(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

(Ⅲ)當(dāng)盈利最多時,求每臺產(chǎn)品的售價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最小值為1,且

(1)求的解析式.

(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案