如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。
(1)求證:平面O1DC⊥平面ABCD;
(2)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。
(1)連結(jié)AC,BD,AC,則O為AC,BD的交點(diǎn)O1為A1C1,B1D1的交點(diǎn)。
由平行六面體的性質(zhì)知:A1O1∥OC且A1O1=OC,
四邊形A1OCO1為平行四邊形, ………(2分)
A1O∥O1C. 又∵A1O⊥平面ABCD,
O1C⊥平面ABCD, ………(4分)
又∵O1C平面O1DC,
平面O1DC⊥平面ABCD。 ………(6分)
(2)由題意可知RtA1OB≌RtA1OA,則A1A=A1B,
又∠A1AB=600,故A1AB是等邊三角形。 …………(7分)
不妨設(shè)AB=a, 則在RtA1OA中,OA=a, AA1=a, OA1=a,
如圖分別以O(shè)B,OC,OA1為x軸,y軸,z軸建立空間直角坐標(biāo)系,
則可得坐標(biāo)為A(0,-a,0), B(a,0,0), A1(0,0,,a) …………(8分)
=(a,a,0), =(-a,0,a)
設(shè)平面ABA1的法向量為=(x,y,z)
則由·=0得x+y=0,由·=0得x-z=0
令x=1得=(1,-1,1) …………(10分)
又知BD⊥平面ACC1A1,故可得平面CAA1的一個(gè)法向量為=(1,0,0)
cosθ=||=
從而平面BAA1與平面CAA1的夾角的余弦值為。 …………(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
雙曲線的兩條漸近線將平面劃分為“上、下、左、右”四個(gè)區(qū)域(不含邊界),若點(diǎn)(1, 2)在“上”區(qū)域內(nèi),則雙曲線離心率的取值范圍為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的左焦點(diǎn)為F1,左、右頂點(diǎn)分別為A1、A2,
P為雙曲線上任意一點(diǎn),則分別以線段PF1,A1A2為直徑的兩個(gè)圓的位置關(guān)系為
A.相交 B.相切 C.相離 D.以上情況都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=3,a6=11,則S7=
A.91 B. C.98 D.49
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知正方形OABC的四個(gè)頂點(diǎn)O(0, 0), A(1, 0), B(1, 1), C(0, 1),設(shè)u=2xy, v=x2-y2,是一個(gè)由平面xOy到平面uOv上的變換,則正方形OABC在這個(gè)變換下的圖形是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com