【題目】已知點(diǎn)A是橢圓的上頂點(diǎn),斜率為的直線交橢圓E于A、M兩點(diǎn),點(diǎn)N在橢圓E上,且.
(1)當(dāng)時,求的面積;
(2)當(dāng)時,求證:.
【答案】(1);(2)證明見解析.
【解析】
(1)由題意可知點(diǎn)M、N的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),且,設(shè)點(diǎn),代入橢圓方程求出,利用三角形的面積公式即可求解.
(2)將直線與橢圓聯(lián)立,求出、,由可得,,令,利用導(dǎo)函數(shù)求出函數(shù)的單調(diào)區(qū)間,再利用零點(diǎn)存在性定理即可判斷出的取值范圍.
(1)由對稱性知點(diǎn)M、N的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),且,
于是可以設(shè)點(diǎn)其中,于是,解得,
所以;
(2)據(jù)題意,直線,聯(lián)立橢圓E,
得:,即:,
則,那么,
同理,知:,
由,得:,即:,
令,則,
所以單調(diào)增,又,,
故存在唯一零點(diǎn),即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓與圓相外切且與軸相切,則動圓的圓心的軌跡記,
(1)求軌跡的方程;
(2)定點(diǎn)到軌跡(1)上任意一點(diǎn)的距離的最小值;
(3)經(jīng)過定點(diǎn)的直線,試分析直線與軌跡的公共點(diǎn)個數(shù),并指明相應(yīng)的直線的斜率是否存在,若存在求的取值或取值范圍情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】能夠使得命題“曲線上存在四個點(diǎn)滿足四邊形是正方形”為真命題的一個實(shí)數(shù)的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法:
①三條直線兩兩相交,則他們一定共面.
②存在兩兩相交的三個平面可以把空間分成9部分.
③如圖是正方體的平面展開圖,則在這個正方體中,一定有平面且平面平面.
④四面體所有的棱長都相等,則它的外接球表面積與內(nèi)切球表面積之比是9.
其中正確的是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若直線a,b與平面所成角都是30°,則這兩條直線平行
B.若直線a與平面、平面所成角相等,則
C.若平面內(nèi)不共線三點(diǎn)到平面的距離相等,則
D.已知二面角的平面角為120°,P是l上一定點(diǎn),則一定存在過點(diǎn)P的平面,使與,與所成銳二面角都為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:對于每位銷售人員,均以10萬元為基數(shù),若銷售利潤沒超出這個基數(shù),則可獲得銷售利潤的5%的獎金;若銷售利潤超出這個基數(shù)(超出的部分是a萬元),則可獲得萬元的獎金.記某位銷售人員獲得的獎金為y(單位:萬元),其銷售利潤為x(單位:萬元).
(1)寫出這位銷售人員獲得的獎金y與其銷售利潤x之間的函數(shù)關(guān)系式;
(2)如果這位銷售人員獲得了萬元的獎金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實(shí)行績效考核,績效考核方案規(guī)定:每個學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學(xué)績效考核成績的期望值哪個大?
(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的中心在坐標(biāo)原點(diǎn),其中一個焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓與軸的一個交點(diǎn).已知橢圓與直線相交于、兩點(diǎn),延長與橢圓交于點(diǎn).
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com