【題目】90后”指1990年及以后出生,“80后”指1980-1989年之間出生,“80前”指1979年及以前出生.某調查機構對全國互聯(lián)網(wǎng)行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結論中不一定正確的是(

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多

【答案】D

【解析】

利用整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到,互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后不一定比80后多.

A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占,故A正確;

B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的,故B正確;

C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多,故C正確;

D中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后不一定比80后多,故D錯誤.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南充高中扎實推進陽光體育運動,積極引導學生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學生稱為鍛煉達人”.

1)將頻率視為概率,估計我校7000名學生中鍛煉達人有多少?

2)從這100名學生的鍛煉達人中按性別分層抽取5人參加某項體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為,過點的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的普通方程與曲線的直角坐標方程;

(Ⅱ)若直線與曲線交于、兩點,求的值,并求定點,兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結構,這種三維的拼插器具內部的凹凸部分(即榫卯結構)嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱,從外表上看,六根等長的正四棱柱分成三組,經(jīng)榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進一個球形容器內,則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計)

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)如下表:

超過1小時

不超過1小時

20

8

12

m

1)求mn;

2)能否有95多的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?

3)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九世紀末:法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設為圓上一個定點,在圓周上隨機取一點,連接,所得弦長大于圓的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,,點,分別為中點.

(1)求證:直線平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科學研究證實,二氧化碳等溫室氣體的排放(簡稱碳排放)對全球氣候和生態(tài)環(huán)境產生了負面影響.環(huán)境部門對A市每年的碳排放總量規(guī)定不能超過550萬噸,否則將采取緊急限排措施.已知A2013年的碳排放總量為400萬噸,通過技術改造和倡導低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少10%.同時,因經(jīng)濟發(fā)展和人口增加等因素,每年又新增加碳排放量m萬噸(m>0.

1)求A2015年的碳排放總量(用含m的式子表示);

2)若A市永遠不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

同步練習冊答案