【題目】過平面直角坐標(biāo)系中的點(diǎn)P(4-3a)(aR)作圓x2+y2=1的兩條切線PA,PB,切點(diǎn)分別為A,B,則數(shù)量積的最小值為(  )

A. B. C. D.

【答案】B

【解析】

由圓的切線性質(zhì)可知PAPB,設(shè)PAPB的夾角為2θ,sinθ,結(jié)合向量的數(shù)量積的定義及基本不等式可求.

因?yàn)辄c(diǎn)P(4-3a,的軌跡方程為x+y=4,圓心O(0,0)到直線x+y=4的距離為=2>1,所以P在圓x2+y2=1外,故有兩條不同的切線,

由圓的切線性質(zhì)可知PAPB,設(shè)PAPB的夾角為2θ,

根據(jù)切線的性質(zhì)可知,sinθ,

||||cos2θ=PA2cos2θ,

=(PO2﹣1)(1﹣2sin2θ)=(PO2﹣1)(1,,

所以當(dāng)=4時(shí),最小為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓軸于點(diǎn),交軸于點(diǎn).以為頂點(diǎn),分別為左、右焦點(diǎn)的橢圓,恰好經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率.

(1)求的方程;

(2)設(shè)直線經(jīng)過點(diǎn)且與相交于兩點(diǎn)(異于點(diǎn)),記直線的斜率為,直線的斜率為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , , 相交于點(diǎn),四邊形為直角梯形, , , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為.在甲出發(fā)后,乙從A乘纜車到B,在B處停留后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路AC長為,經(jīng)測量,,.當(dāng)乙出發(fā)________分鐘時(shí),乙在纜車上與甲的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(2sinx,-1),,函數(shù)fx)=

(1)求函數(shù)fx)的對(duì)稱中心;

(2)設(shè)ABC的內(nèi)角AB,C所對(duì)的邊為a,b,c,且a2=bc,求fA)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù)滿足,其中.實(shí)數(shù)滿足.

1)若,且為真,求實(shí)數(shù)的取值范圍;

2)非是非的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?ǎ◥蹏!⒏粡(qiáng)福、和諧福、友善福,敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?

2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對(duì)象中至少有一位男生的概率.

參考公式 .

附表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,).

1)求的值;

2)是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由;

3)設(shè)數(shù)列的前n項(xiàng)和為,求

查看答案和解析>>

同步練習(xí)冊(cè)答案