【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線C和直線的直角坐標(biāo)系方程;
(2)已知直線與曲線C相交于A,B兩點,求的值.
【答案】(1)曲線,直線;(2).
【解析】
(1)根據(jù)曲線的參數(shù)方程,消去參數(shù)即可求出曲線方程,根據(jù)直線的極坐標(biāo)方程,根據(jù)極坐標(biāo)與直角坐標(biāo)轉(zhuǎn)換的公式即可求出直線的直角坐標(biāo)方程;
(2)由于點,,均在直線上,所以利用直線參數(shù)方程的幾何意義,與曲線聯(lián)立,求出根,即可求出的值.
(1)由題知,,
消去有,
即曲線,
因為,
即直線;
(2)易知點在直線上,且直線的傾斜角為,
則直線的參數(shù)方程為(t為參數(shù)),
因為直線與曲線C相交于A,B兩點,
所以有,
解得,,
根據(jù)參數(shù)的幾何意義有,,
有,,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,需引進一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.
(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)曲線與曲線有兩個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中,面為矩形,面面,.
(1)求證:面面;
(2)已知多面體各頂點均在同一球面上,且該球的表面積為,,當(dāng)這個多面體的體積取得最大值時求其側(cè)視圖的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新中國成立70周年以來,黨中央國務(wù)院高度重視改善人民生活,始終把提高人民生活水平作為一切工作的出發(fā)點和落腳點城鄉(xiāng)居民收入大幅增長,居民生活發(fā)生了翻天覆地的變化.下面是1949年及2015年~2018年中國居民人均可支配收入(元)統(tǒng)計圖.以下結(jié)論中不正確的是( )
A.20l5年-2018年中國居民人均可支配收入與年份成正相關(guān)
B.2018年中居民人均可支配收入超過了1949年的500倍
C.2015年-2018年中國居民人均可支配收入平均超過了24000元
D.2015年-2018年中圍居民人均可支配收入都超過了1949年的500倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,是等邊三角形,點在棱上,平面平面.
(1)求證:平面平面;
(2)若,求直線與平面所成角的正弦值的最大值;
(3)設(shè)直線與平面相交于點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動,當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.
(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;
(2)估計抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;
(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com