【題目】某市據(jù)實(shí)際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報(bào)酬,第二,整村推進(jìn)方式指以貧困村為具體幫扶對(duì)象,幫扶對(duì)口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實(shí)地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識(shí),第四,移民搬遷方式,指對(duì)目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實(shí)行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項(xiàng)任務(wù),2020年初在全市貧困戶(分一般貧困戶和“五特”戶兩類)中隨機(jī)抽取了5000戶就目前的主要四種扶貧方式行了問(wèn)卷調(diào)查,支持每種扶貧方式的結(jié)果如表:
調(diào)查的貧困戶 | 支持以工代賑戶數(shù) | 支持整村推進(jìn)戶數(shù) | 支持科技扶貧戶數(shù) | 支持移民搬遷戶數(shù) |
一般貧困戶 | 1200 | 1600 | 200 | |
五特戶(五保戶和特困戶) | 100 | 100 |
已知在被調(diào)查的5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進(jìn)行深入訪談,問(wèn)應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?
(Ⅱ)雖然“五特”戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的“五特”戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?
【答案】(Ⅰ)16戶(Ⅱ)
【解析】
(Ⅰ)5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.可求得支持整村推進(jìn)的戶數(shù)1800,可知,進(jìn)而求得,由即可求得結(jié)果;
(Ⅱ)因?yàn)?/span>,,,列出所有符合的結(jié)果共13種,由于五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,即,即,即有意義,找到符合題意的結(jié)果即可求出概率.
解:(Ⅰ)∵支持整村推進(jìn)戶數(shù)為戶.
∴戶.
∴應(yīng)在支持科技扶貧戶數(shù)中抽取的戶數(shù)為:(戶).
(Ⅱ)∵
五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%
∴即
∴有意義,又,,,情況列舉如下:
,共13種情況.
∴本次調(diào)查有意義的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門(mén)學(xué)科中任選3門(mén).若同學(xué)甲必選物理,則下列說(shuō)法正確的是( )
A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件
B.甲的不同的選法種數(shù)為15
C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是
D.乙、丙兩名同學(xué)都選物理的概率是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問(wèn)卷作答隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.
(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān)?
男 | 女 | 總計(jì) | |
合格 | |||
不合格 | |||
總計(jì) |
(Ⅱ)從上述樣本中,成績(jī)?cè)?/span>60分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),記來(lái)自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).
(1)證明:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過(guò)點(diǎn),且△PF1F2的面積為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為1的直線與以原點(diǎn)為圓心,半徑為的圓交于A,B兩點(diǎn),與橢圓C交于C,D兩點(diǎn),且(),當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)下的距離為10.
(1)求拋物線C的方程;
(2)設(shè)過(guò)焦點(diǎn)F的的直線與拋物線C交于兩點(diǎn),且拋物線在兩點(diǎn)處的切線分別交x軸于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若是函數(shù)的極值點(diǎn),求的極小值;
(2)若對(duì)任意的實(shí)數(shù)a,函數(shù)在上總有零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com