已知關(guān)于x的方程x2+x+1=mx,x∈[
1
2
,3]只有一個(gè)實(shí)數(shù)根,求m的取值范圍.
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x2+(1-m)x+1,則由題意可得函數(shù)f(x)在[
1
2
,3]只有一個(gè)零點(diǎn),故有f(
1
2
)•f(3)≤0,由此求得m的取值范圍.
解答: 解:令f(x)=x2+(1-m)x+1,則由題意可得函數(shù)f(x)在[
1
2
,3]只有一個(gè)零點(diǎn),
故有f(
1
2
)•f(3)≤0,即
7-2m
4
≤0,解得 m≥
7
2

故要求的m的取值范圍為[
7
2
,+∞).
點(diǎn)評:本題主要考查方程根的存在性以及個(gè)數(shù)判斷,函數(shù)零點(diǎn)與方程的根的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“x∈Z,都有x2-2x+a>0”的否定是( 。
A、?x∈Z,使x2-2x+a≤0
B、?x∈Z,使x2-2x+a>0
C、?x∈Z,都有x2-2x+a>0
D、不存在?x∈Z,使x2-2x+a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(-5,0),點(diǎn)Q是圓(x-5)2+y2=36上的點(diǎn),M是線段PQ的中點(diǎn).
(Ⅰ)求點(diǎn)M的軌跡C的方程.
(Ⅱ)過點(diǎn)P的直線l和軌跡C有兩個(gè)交點(diǎn)A、B(A、B不重合),①若|AB|=4,求直線l的方程.②求
PA
PB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
且與拋物線y2=4x有公共焦點(diǎn)F2
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓交于M、N兩點(diǎn),直線F2M與F2N傾斜角互補(bǔ),證明:直線l過定點(diǎn),并求該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點(diǎn),AC與BD的交點(diǎn)為M.
(1)求證:PC∥平面EBD;
(2)求證:平面BED⊥平面AED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式丨x-2丨+丨x-6丨>a解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為常數(shù),a≠0,函數(shù)f(x)=(a+
b
x
ex

(1)若a=2,b=1,求f(x)在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:f(x)在區(qū)間[1,2]上是增函數(shù);
②若f(2)<0,f(-2)<e-2,且f(x)在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)(a,b)形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C方程為
x2
a2
+
y2
b2
=1(a>b>0),左、右焦點(diǎn)分別是F1,F(xiàn)2,若橢圓C上的點(diǎn)P(1,
3
2
)到F1,F(xiàn)2的距離和等于4.
(Ⅰ)寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)M是橢圓C的動(dòng)點(diǎn),MF1交橢圓與點(diǎn)N,求線段MN中點(diǎn)T的軌跡方程;
(Ⅲ)直線l過定點(diǎn)M(0,2),且與橢圓C交于不同的兩點(diǎn)A,B,若∠A0B為銳角(O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以40千米/時(shí)的速度向北偏東30°航行的科學(xué)探測船上釋放了一個(gè)探測氣球,氣球順風(fēng)向正東飄去,3分鐘后氣球上升到1千米處,從探測船上觀察氣球,仰角為30°,求氣球的水平飄移速度.

查看答案和解析>>

同步練習(xí)冊答案