(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,點P(2,
4
) 到直線ρcos(θ-
π
4
)=
2
的距離等于
 
考點:簡單曲線的極坐標(biāo)方程,點到直線的距離公式,點的極坐標(biāo)和直角坐標(biāo)的互化
專題:計算題
分析:化點、直線的極坐標(biāo)為直角坐標(biāo),利用點到直線的距離公式,我們可以得到結(jié)論.
解答: 解:點P(2,
4
)的直角坐標(biāo)為(-
2
,-
2

直線ρcos(θ-
π
4
)=
2
的直角坐標(biāo)方程為:x+y-2=0
利用點到直線的距離公式可得:d=
|-
2
-
2
-2|
2
=2+
2

故答案為:2+
2
點評:極坐標(biāo)中的問題,通常是轉(zhuǎn)化為直角坐標(biāo),進行解決,掌握轉(zhuǎn)化公式是解決這類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=a(a+1)x2-(2a+1)x+1,當(dāng)a=1,2,3,…,n,…時,其圖象在x軸上截得的弦長依次為d1,d2,…,dn,…,則d1+d2+…+dn為(  )
A、
1
n(n+1)
B、
n
n(n+1)
C、
1
n+1
D、
n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(-2,0)且垂直于直線2x-6y+l=0的直線l的方程式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足不等式
0≤x≤2
0≤y≤4-x2
,則z=2x+y的最大值為( 。
A、1B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1
x=1+2t
y=2+t
(t為參數(shù))與直線l2
x=2+scosα
y=sinα
(s為參數(shù))平行,則直線l2的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的首項a1=2011,公比q=-
1
2
,數(shù)列{an}前n項和記為Sn,前n項積記為Tn
(1)證明:S2≤Sn≤S1;
(2)判斷Tn與Tn+1的大小,并求n為何值時,Tn取得最大值;
(3)證明:若數(shù)列{an}中的任意相鄰三項按從小到大排列,則總可以使其成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為d1,d2,…,dn,則數(shù)列{dn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,1)內(nèi)任取兩個實數(shù),則它們的和大于
1
2
而小于
3
2
的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如右,那么可得這個幾何體的體積是( 。
A、
1
3
B、
2
3
C、
4
3
D、
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有1000人患某種病的概率為0.1,采取每k人一組混合化驗一次,如果成陰性,這k人化驗通過,如果成陽性,還需對這k人每人進行一次化驗,以確定患病的人,問k為多少時化驗次數(shù)最少?

查看答案和解析>>

同步練習(xí)冊答案