14.已知$\frac{sinα-4cosα}{2sinα+cosα}=2$.
(I)求tanα的值;
(II)若-π<α<0,求sinα+cosα的值.

分析 (I)由條件利用同角三角函數(shù)的基本關(guān)系求得3sinα=-6cosα,可得tanα的值.
(II)利用同角三角函數(shù)的基本關(guān)系求得sinα、cosα的值,可得sinα+cosα的值.

解答 解:(I)∵已知$\frac{sinα-4cosα}{2sinα+cosα}=2$,可得3sinα=-6cosα,∴$tanα=\frac{sinα}{cosα}=-2$.
(Ⅱ)∵α∈(-π,0),且tanα=$\frac{sinα}{cosα}$=-2,sinα<0,sin2α+cos2α=1,
∴$sinα=-\frac{{2\sqrt{5}}}{5}$,∴$cosα=\frac{sinα}{tanα}=\frac{{\sqrt{5}}}{5}$,∴$sinα+cosα=-\frac{{\sqrt{5}}}{5}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”,結(jié)論顯然是錯(cuò)誤的,導(dǎo)致推理錯(cuò)誤的原因是( 。
A.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x|x-2a|+a2-4a(a∈R).
(Ⅰ)當(dāng)a=-1時(shí),求f(x)在[-3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3個(gè)不相等的實(shí)根x1,x2,x3,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù) f(x)=cos$\frac{π}{3}x$,則 f(1)+f(2)+f(3)+…+f(2016)+f(2017)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知x,y之間的一組數(shù)據(jù)如右表,則y與x的回歸方程必經(jīng)過(guò)( 。
x0123
y1357
A.(1.5,4)B.(1,3)C.(2,2)D.(2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}5x+3y≤15\\ y≤x+1\\ x-5y≤3.\end{array}$
(1)求目標(biāo)函數(shù)z=x+y的最大值;
(2)求目標(biāo)函數(shù)z=$\sqrt{{x^2}+{y^2}+6x-6y+18}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=a•f3(x)-b•g(x)-2在區(qū)間(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)是周期為2的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(-$\frac{5}{2}$)=( 。
A.-$\frac{35}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.同一個(gè)正方體的內(nèi)切球、棱切球、外接球的體積之比為$1:2\sqrt{2}:3\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案