在數(shù)列{an}中,若a1=1,an+1=2an+1(n≥1),設(shè)bn=an+1,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)分別求{an},{bn}的通項公式.
考點:等比關(guān)系的確定,數(shù)列遞推式
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(1)利用an+1=2an+1,可得an+1+1=2(an+1),即可證明數(shù)列{bn}是等比數(shù)列;
(2)利用等比數(shù)列的通項公式,可得{bn}的通項公式,從而可求{an}的通項公式.
解答: (1)證明:∵an+1=2an+1,
∴an+1+1=2(an+1),
∵bn=an+1,
∴bn+1=2bn,
∴數(shù)列{bn}是等比數(shù)列;
(2)解:由(1)知,數(shù)列{bn}是等比數(shù)列,
∴bn=2•2n-1=2n,
∴an+1=2n,
∴an=2n-1.
點評:本題考查等差數(shù)列、等比數(shù)列的通項,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在曲線f(x)=x4-x上,曲線在點P處的切線平行于直線3x-y=0,則點P的坐標(biāo)為(  )
A、(0,0)
B、(1,1)
C、(0,1)
D、(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=3an,(n∈N*),且a1=3
(1)求數(shù)列{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=log3an,(n∈N*),記cn=an+bn,(n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a∈R,函數(shù)f(x)=
1
3
x3+
1
2
ax2-(a+1)x.
(Ⅰ)若a=0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[-1,2]時,-1≤f(x)≤
2
3
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,0,-1),
b
=(-1,1,2).
(Ⅰ)若k
a
+
b
a
-2
b
平行,求k的值;
(Ⅱ)若k
a
+
b
a
+3
b
垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,獨秀峰是川東著名風(fēng)景區(qū)萬源八臺山的一個精致景點.它峰座凸兀,三面以溝壑與陡峭山壁阻隔.峰體雄偉挺拔險峻,北、西、南三面環(huán)山,東面空曠.峰頂一千年松傲雪挺立.為了測這千年松樹高,我們選擇與峰底E同一水平線的A、B為觀測點,現(xiàn)測得AB=20米,點A對主梢C和主干底部D的仰角分別是40°、30°,點B對D的仰角是45°.求這棵千年松樹高多少米(即求CD的長,結(jié)果保留整數(shù).參考數(shù)據(jù):sin10°=0.17,sin50°=0.8,
6
=2.4,
2
=1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2ax+2+b(a>0),若f(x)在區(qū)間[0,3]上有最大值10,最小值2.
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M,N分別是線段A1B和A1B1的中點.
(Ⅰ)證明:平面MON∥平面B1BCC1
(Ⅱ)證明:平面A1BD⊥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有大小、形狀相同的紅球、黑球各一個,現(xiàn)依次有放回地隨機(jī)摸取3次,每次摸取一個球.
(1)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果;
(2)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為4分的概率.

查看答案和解析>>

同步練習(xí)冊答案