【題目】已知長方體,,已知P是矩形內(nèi)一動點,與平面所成角為,設P點形成的軌跡長度為,則_________;當的長度最短時,三棱錐的外接球的表面積為_____________.

【答案】

【解析】

先確定與平面所成角為,即得,從而根據(jù)弧長公式得,再根據(jù)二倍角正切公式得結(jié)果;先確定的長度最短時P點位置,再確定三棱錐的外接球的球心,根據(jù)外接圓半徑求得球半徑,即得球的表面積.

因為長方體平面

所以與平面所成角為,

因為與平面所成角為,所以

因為,所以

從而P點形成的軌跡為以A為圓心,2為半徑的圓在矩形內(nèi)一段圓弧,設其圓心角為,則

因此

因為,所以最小時,長度最短,此時P為AC與上面圓弧的交點,設外接圓圓心為,半徑為,

設三棱錐的外接球的球心為,半徑為,

從而

因此球的表面積為

故答案為:;

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)引進現(xiàn)代化管理體制,生產(chǎn)效益明顯提高,2019年全年總收入與2018年全年總收入相比增長了一倍,同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生相應變化,下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法錯誤的是(

A.該企業(yè)2019年研發(fā)的費用與原材料的費用超過當年總收入的50%

B.該企業(yè)2019年設備支出金額及原材料的費用均與2018相當

C.該企業(yè)2019年工資支出總額比2018年多一倍

D.該企業(yè)2018年與2019研發(fā)的總費用占這兩年總收入的20%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高二年級組織外出參加學業(yè)水平考試,出行方式為:乘坐學校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當的學生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當在什么范圍內(nèi)時,乘坐定制公交的平均時間少于自行打車的平均時間?

(2)求該校學生參加考試平均時間的表達式:討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代重要建筑的室內(nèi)上方,通常會在正中部位做出向上凸起的窟窿狀裝飾,這種裝飾稱為藻井.北京故宮博物院內(nèi)的太和殿上方即有藻井(圖1),全稱為龍風角蟬云龍隨瓣枋套方八角深金龍藻井.它展示出精美的裝飾空間和造型藝術(shù),是我國古代豐富文化的體現(xiàn),從分層構(gòu)造上來看,太和殿藻井由三層組成:最下層為方井,中為八角井,上為圓井.2是由圖1抽象出的平面圖形,若在圖2中隨機取一點,則此點取自圓內(nèi)的概率為( )

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565256704/STEM/4d65bbaaf0c447efbbb2157ff8983df0.png]

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過作斜率為的直線,兩點,以線段為直徑的圓.時,圓的半徑為2.

1)求的方程;

2)已知點,對任意的斜率,圓上是否總存在點滿足,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形區(qū)域OABC內(nèi)有以OA為半徑的圓弧.現(xiàn)決定從AB邊上一點D引一條線段DE與圓弧相切于點E,從而將正方形區(qū)域OABC分成三塊:扇形COE為區(qū)域I,四邊形OADE為區(qū)域II,剩下的CBDE為區(qū)域III.區(qū)域I內(nèi)栽樹,區(qū)域II內(nèi)種花,區(qū)域III內(nèi)植草.每單位平方的樹、花、草所需費用分別為、,總造價是W,設

1)分別用表示區(qū)域I、IIIII的面積;

2)將總造價W表示為的函數(shù),并寫出定義域;

3)求為何值時,總造價W取最小值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點是線段上的動點,以下結(jié)論:

平面;

③三棱錐,體積不變;

中點時,直線與平面所成角最大.

其中正確的序號為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線方程為,求的值;

2)求函數(shù)的極值點;

3)設,若當時,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設的極值點,求,并求的單調(diào)區(qū)間;

2)當時,證明.

查看答案和解析>>

同步練習冊答案