【題目】某中學(xué)高二年級組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間?
(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說明其實(shí)際意義.
【答案】(1);(2)詳見解析.
【解析】
(1)由題意知得到關(guān)于x的不等式,求解不等式即可確定乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間時(shí)x的取值范圍.
(2)分類討論0<x≤30和30<x<100兩種情況下函數(shù)的單調(diào)性并說明其實(shí)際意義即可.
(1)由題意知,當(dāng)30<x<100時(shí),
f(x)=2x+-90>40,
即x2-65x+900>0,
解得x<20或x>45,
∴x∈(45,100)時(shí),乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間;
(2)當(dāng)0<x≤30時(shí),
g(x)=30x%+40(1-x%)=40-;
當(dāng)30<x<100時(shí),
g(x)=(2x+-90)x%+40(1-x%)=-x+58;
∴g(x)=,
當(dāng)0<x<32.5時(shí),g(x)單調(diào)遞減;
當(dāng)32.5<x<100時(shí),g(x)單調(diào)遞增;
在上單調(diào)遞減,在上單調(diào)遞增,
說明當(dāng)以上的人自駕時(shí),人均通勤時(shí)間開始增加.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,其前項(xiàng)和滿足:.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求證: ;
(3)設(shè)(為非零整數(shù),),是否存在確定的值,使得對任意,有恒成立.若存在求出的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明直線過定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,B為橢圓上任一點(diǎn),F為橢圓左焦點(diǎn),已知的最小值與最大值之和為4,且離心率,拋物線的通徑為4.
求橢圓和拋物線的方程;
設(shè)坐標(biāo)原點(diǎn)為O,A為直線與已知拋物線在第一象限內(nèi)的交點(diǎn),且有.
試用k表示A,B兩點(diǎn)坐標(biāo);
是否存在過A,B兩點(diǎn)的直線l,使得線段AB的中點(diǎn)在y軸上?若存在,求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).
(1)設(shè)圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn)且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為, .
(1)如果,且對于一切正整數(shù),均有,求;
(2)如果對于一切正整數(shù),均有,求;
(3)如果對于一切正整數(shù),均有,證明: 能被8整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩品種的棉花中各抽測了25根棉花的纖維長度(單位:mm),得到如圖5的莖葉圖,整數(shù)位為莖,小數(shù)位為葉,如27.1mm的莖為27,葉為1.
(1)試比較甲、乙兩種棉花的纖維長度的平均值的大小及方差的大小;(只需寫出估計(jì)的結(jié)論,不需說明理由)
(2)將棉花按纖維長度的長短分成七個(gè)等級,分級標(biāo)準(zhǔn)如表:
試分別估計(jì)甲、乙兩種棉花纖維長度等級為二級的概率;
(3)為進(jìn)一步檢驗(yàn)甲種棉花的其它質(zhì)量指標(biāo),現(xiàn)從甲種棉花中隨機(jī)抽取4根,記為抽取的棉花纖維長度為二級的根數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com