【題目】某種商品在30天內每件的銷售價(元)與時間(天)的函數(shù)關系如圖表示,該商品在30天內日銷售量(件)與時間(天)之間的關系為函數(shù).

1)根據(jù)提供的圖像,寫出商品每件的銷售價格與時間的函數(shù)關系式;

2)若已知,求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天。(日銷售金額=每件的銷售價格×日銷售量)

【答案】12)第25天時, 銷售金額最大為

【解析】

(1)根據(jù)圖像可知,每件商品的銷售價格與時間的函數(shù)關系式滿足一次函數(shù),根據(jù)圖像中所提供的點進行求解與時間的函數(shù)關系式;

(2)由日銷售金額=每件的銷售價格日銷售量,因為,結合所求與時間的函數(shù)關系式,可求得日銷售金額的分段函數(shù),進而可求得銷售金額最大值.

(1) 將兩點代入得:

:

將兩點代入得:

:

綜上所述:

(2) 設銷售額為

綜上所述,25天時, 銷售金額最大為元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某產品生產廠家根據(jù)以往銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產產品x(百臺),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產1百臺的生產成本為1萬元(總成本=固定成本+生產成本),銷售收入R(x)(萬元)滿足假設該產品產銷平衡,試根據(jù)上述資料

(Ⅰ)要使工廠有盈利,產量x應控制在什么范圍內;

(Ⅱ)工廠生產多少臺產品時,可使盈利最多?

(Ⅲ)當盈利最多時,求每臺產品的售價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的最小值為1,且

(1)求的解析式.

(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程是為參數(shù))以原點為極點, 軸正半軸為極軸,并取與直角坐標系相同的單位長度,建立極坐標系,曲線的極坐標方程是.

(1)求曲線, 的直角坐標方程;

(2)若、分別是曲線上的任意點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與拋物線相切于點.

(1)求實數(shù)的值;

(2)求以點為圓心,且與拋物線的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Snan的等差中項.

(1)證明:數(shù)列{an}為等差數(shù)列;

(2)若bn=-n+5,求{an·bn}的最大項的值并求出取最大值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCDEFGH構成的面積為200平方米的十字型地域.現(xiàn)計劃在正方形MNPQ上建花壇,造價為4200/平方米,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210/平方米,再在四個空角上鋪草坪,造價為80/平方米.

1)設總造價為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關于x的函數(shù)關系式;

2)計劃至少要投入多少元,才能建造這個休閑小區(qū).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)若恒成立,試確定實數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

同步練習冊答案