【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且,若直線與橢圓交于不同兩點(diǎn)、都在軸上方),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線的方程;

3)對于動(dòng)直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請說明理由.

【答案】1;(2;(3)存在,.

【解析】

1)利用題意結(jié)合距離公式整理計(jì)算即可求得橢圓方程;

2)首先求得點(diǎn)的坐標(biāo),然后結(jié)合直線的斜率即可求得直線方程;

3)聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理和題意整理計(jì)算即可證得直線過定點(diǎn).

解:(1)設(shè),則,,

化簡得:,

橢圓的方程為:

2,

,,

,

代入橢圓方程得:

,或,代入,(舍去),或,

,據(jù)此可得:,

3)直線恒過定點(diǎn),證明如下:

由于,所以關(guān)于軸的對稱點(diǎn)在直線上.

設(shè),,,,

設(shè)直線方程:,代入橢圓方程,

得:,故:

,

則直線的方程為:

,得:,

,,則:

直線總經(jīng)過定點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E為AC的中點(diǎn).

(I)證明:ADBC;

(II)求直線 DE 與平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系(),點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長線上,且滿足,點(diǎn)的軌跡為。

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中,,且,,,則該三棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對倉儲(chǔ)物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動(dòng)向,中國物流與采購聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲(chǔ)指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲(chǔ)指數(shù)走勢情況.

根據(jù)該折線圖,下列結(jié)論正確的是

A. 2016年各月的倉儲(chǔ)指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲(chǔ)指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲(chǔ)指數(shù)比2016年同期波動(dòng)性更大

D. 2017年11月的倉儲(chǔ)指數(shù)較上月有所回落,顯示出倉儲(chǔ)業(yè)務(wù)活動(dòng)仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤,且每次移動(dòng)后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個(gè)圓盤從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,,平面平面.

(1)求證:;

(2)若,直線與平面所成角為,的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棋盤上標(biāo)有第0,12,,100站,棋子開始時(shí)位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營)或第100站(失敗集中營)是,游戲結(jié)束.設(shè)棋子跳到第n站的概率為.

1)求的值;

2)證明:;

3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

是否存在,使得,按照某種順序成等差數(shù)列?若存在,請確定的個(gè)數(shù);若不存在,請說明理由;

求實(shí)數(shù)與正整數(shù),使得內(nèi)恰有個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案