【題目】棋盤上標(biāo)有第01,2,,100站,棋子開始時(shí)位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營)或第100站(失敗集中營)是,游戲結(jié)束.設(shè)棋子跳到第n站的概率為.

1)求的值;

2)證明:;

3)求的值.

【答案】123

【解析】

(1)棋子跳到第3站有以下三種途徑:連續(xù)三次擲出正面,其概率在;第一次擲出反面,第二次擲出正面,其概率為;第一次擲出正面,第二次擲出反面,其概率為,因此 .

(2)易知棋子先跳到第站,再擲出反面,其概率為;棋子先跳到第站,再擲出正面,其概率為,因此有

,

,

也即.

(3)由(2)知數(shù)列是首項(xiàng)為 ,公比為的等比數(shù)列.因此有.由此得到

.

由于若跳到第99站時(shí),自動停止游戲,故有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從如圖所示的,由9個(gè)單位小方格組成的,方格表的16個(gè)頂點(diǎn)中任取三個(gè)頂點(diǎn),則這三個(gè)點(diǎn)構(gòu)成直角三角形的概率為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且,若直線與橢圓交于不同兩點(diǎn)、都在軸上方),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線的方程;

3)對于動直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上一點(diǎn),經(jīng)過點(diǎn)的直線與拋物線交于、兩點(diǎn)(不同于點(diǎn)),直線、分別交直線于點(diǎn)、.

1)求拋物線方程及其焦點(diǎn)坐標(biāo);

2)求證:以為直徑的圓恰好經(jīng)過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中所有正確的序號是_________

①兩直線的傾斜角相等,則斜率必相等;

②若動點(diǎn)到定點(diǎn)和定直線的距離相等,則動點(diǎn)的軌跡是拋物線;

③已知、是橢圓的兩個(gè)焦點(diǎn),過點(diǎn)的直線與橢圓交于、兩點(diǎn),則的周長為

④曲線的參數(shù)方程為為參數(shù),則它表示雙曲線且漸近線方程為

⑤已知正方形,則以為焦點(diǎn),且過、兩點(diǎn)的橢圓的離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元),每件售價(jià)為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的內(nèi)心為、、分別是邊、的中點(diǎn),證明:直線平分的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓與圓相切,并且橢圓上動點(diǎn)與圓上動點(diǎn)間距離最大值為.

1)求橢圓的方程;

2)過點(diǎn)作兩條互相垂直的直線,,交于兩點(diǎn),與圓的另一交點(diǎn)為,求面積的最大值,并求取得最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,對任意nN*都有an+1=an+n+1,則=(   。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案