8.以點(diǎn)(2,-1)為圓心,且與直線x+y=7相切的圓的方程是(x-2)2+(y+1)2=18.

分析 由點(diǎn)到直線的距離求出半徑,從而得到圓的方程.

解答 解:將直線x+y=7化為x+y-7=0,
圓的半徑r=$\frac{|2-1-7|}{\sqrt{2}}$=3$\sqrt{2}$,
所以圓的方程為(x-2)2+(y+1)2=18.
故答案為(x-2)2+(y+1)2=18.

點(diǎn)評(píng) 本題考查直線與圓相切的性質(zhì),圓的標(biāo)準(zhǔn)方程等知識(shí)的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$a=\sqrt{3},b=\sqrt{15}-\sqrt{7},c=\sqrt{11}-\sqrt{3}$,那么a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面坐xOy中,雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的虛軸長(zhǎng)是6,漸近線方程是y=±$\frac{3}{4}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=6x2+x-1.
(Ⅰ)求f(x)的零點(diǎn);
(Ⅱ)若α為銳角,且sinα是f(x)的零點(diǎn).
(。┣$\frac{{tan({π+α})•cos({-α})}}{{cos({\frac{π}{2}-α})•sin({π-α})}}$的值;
(ⅱ)求$sin({α+\frac{π}{6}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點(diǎn)O,A,B,F(xiàn)分別為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心、左頂點(diǎn)、上頂點(diǎn)、右焦點(diǎn),過點(diǎn)F作OB的平行線,它與橢圓C在第一象限部分交于點(diǎn)P,若$\overrightarrow{AB}=λ\overrightarrow{OP}$,則實(shí)數(shù)λ的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四組函數(shù)中,表示相等函數(shù)的一組是( 。
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=lg(x+1)+lg(x-1),g(x)=lg(x2-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=2-i,則z1•z2=( 。
A.-5B.5C.-4+iD.-4-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$y=\root{3}{x}-\frac{1}{x^2}$ 的零點(diǎn)是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案