精英家教網 > 高中數學 > 題目詳情
4.在平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AD}$|=$\sqrt{3}$,若將其沿BD折成直二面角A-BD-C,則三棱錐A-BDC的外接球的表面積為( 。
A.16πB.C.D.

分析 折疊之后呢得出三棱錐A-BDC的外接球與長方體的外接球相同,利用對角線求解即可,再利用面積公式求解即可.

解答 解:在平行四邊形ABCD中,AB⊥BD,|$\overrightarrow{AB}$|=1,
|$\overrightarrow{AD}$|=$\sqrt{3}$,若將其沿BD折成直二面角A-BD-C,
∴三棱錐A-BDC鑲嵌在長方體中,
即得出:三棱錐A-BDC的外接球與長方體的外接球相同,
∴2R=$\sqrt{3+1}$=2,R=1,
∴外接球的表面積為4π×12=4π,
故選:C.

點評 本題考察了空間幾何體的性質,空間思維能力的運用,鑲嵌幾何體的求解方法,轉為常見的幾何體求解,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.已知函數f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{|lgx|,x>0}\end{array}\right.$,則函數g(x)=f(1-x)-1的零點個數為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)求點B到平面AB1C1的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知函數g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函數y=g(x)的圖象在x=$\frac{1}{e}$處的切線方程;
(Ⅱ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).
①若a≥0,求f(x)的單調區(qū)間;
②設a>0,且對任意x>0,f(x)≥f(1).試比較lna與-2b的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知a>0,b>0,a+b=2.
(1)求$\frac{1}{a}$+$\frac{4}$的最小值;
(2)求證:$\frac{ab(\sqrt{a}+\sqrt)}{a+b}$≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知f(x)=ex,g(x)=lnx.
(1)若f($\frac{1}{e}$x)-ax≥0恒成立(a≥0),求a的取值范圍;
(2)求證:f($\frac{1}{e}$x)-g(x-e)>1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.已知邊長為$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿對角線BD折成二面角為120°的四面體,則四面體的外接球的表面積為28π.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)>6的解集A;
(2)若關于x的表達式f(x)>|a-1|的解集B⊆A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知△ABC的三個頂點的坐標為A(-1,0)、B(4,0)、C(0,c).
(1)若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,求c的值;
(2)當c滿足(1)問題的結論時,求△ABC的重心坐標G(x,y).

查看答案和解析>>

同步練習冊答案