18.設(shè)集合M={x|x2-3x+2>0},集合N={x|x≤-2},則M∩N=( 。
A.{x|x>-2}B.{x|x≤-2}C.{x|x>-1}D.{x|x≥-2}

分析 求出M中不等式的解集確定出M,找出M與N的交集即可.

解答 解:由M中不等式變形得:(x-1)(x-2)>0,
解得:x<1或x>2,即M={x|x<1或x>2},
∵N={x|x≤-2},
∴M∩N={x|x≤-2},
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={x|(x-a)(x-a2)<0},B={x|x2-3x+2<0},且A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某校從參加高二年級學(xué)業(yè)水平測試的學(xué)生中抽出80名學(xué)生,其數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖,估計這次測試中數(shù)學(xué)成績的平均分、眾數(shù)、中位數(shù)分別是(  )
A.73.3,75,72B.72,75,73.3C.75,72,73.3D.75,73.3,72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式:|x-1|+2x>4的解集是{x|x≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當(dāng)x∈(-2,0)時,f(x)=2x,則f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:x-y-1=0是圓C:x2+y2+mx-2y+1=0的對稱軸,過點A(m,-1)作圓C的一條切線,切點為B,則|AB|=(  )
A.2B.$4\sqrt{2}$C.6D.$2\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠ABC=60°,O為AC,BD的交點,且PO⊥平面ABCD,PO=$\sqrt{6}$,點M為側(cè)棱PD上一點,且滿足PD⊥平面ACM.
(1)若在棱PD上存在一點N,且BN∥平面AMC,確定點N的位置,并說明理由;
(2)求點B到平面MCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$a={2.5^{-\frac{3}{2}}}$,$b={log_{\frac{2}{3}}}2.5$,c=2.5-2,則a、b、c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD..a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}的通項公式為an=2n-1,則使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案