13.定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當x∈(-2,0)時,f(x)=2x,則f(2016)-f(2015)=-$\frac{1}{2}$.

分析 求出函數(shù)的周期,利用函數(shù)的周期以及函數(shù)的奇偶性,轉化求解函數(shù)值即可.

解答 解:對任意x∈R都有f(x)=f(x+4),可知函數(shù)的周期為:4.
當x∈(-2,0)時,f(x)=2x,在R上的奇函數(shù)f(x),f(0)=0,
則f(2016)-f(2015)=f(0)-f(-1)=0-2-1=-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點評 本題考查抽象函數(shù)的應用,函數(shù)的奇偶性的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.若a>b>0>c,則ac<bc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.以坐標原點為極點,以x軸的非負半軸為極軸建立極坐標系,已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}}\right.$(θ為參數(shù),θ∈[0,π]),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}}\right.$(t為參數(shù)).
(1)點D在曲線C上,且曲線C在點D處的切線與直線x+y+2=0垂直,求點D的極坐標;
(2)設直線l與曲線C有兩個不同的交點,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{2+x}+\sqrt{3-x}$的定義域為[-2,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x<0時$f(x)=x+\frac{a^2}{x}+7$,若f(x)≥a+1對一切 x≥0成立,則a的取值范圍為a≤-1或a≥8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設集合M={x|x2-3x+2>0},集合N={x|x≤-2},則M∩N=(  )
A.{x|x>-2}B.{x|x≤-2}C.{x|x>-1}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$sin(\frac{π}{4}-θ)$=$\frac{{2\sqrt{2}}}{3}$,則sin2θ=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.計算lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.過定點A的直線x-my=0(m∈R)與過定點B的直線mx+y-m+3=0(m∈R)交于點P(x,y),則|PA|2+|PB|2的值為(  )
A.$\sqrt{10}$B.10C.2$\sqrt{5}$D.20

查看答案和解析>>

同步練習冊答案