F為拋物線y2=2x的焦點(diǎn),A,B,C為該拋物線上三點(diǎn),若
FA
+
FB
+
FC
=
0
,則|
FA
|+|
FB
|+|
FC
|=
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)
FA
+
FB
+
FC
=
0
,可判斷點(diǎn)F是△ABC重心,進(jìn)而可求x1+x2+x3的值,再根據(jù)拋物線的定義,即可求得答案.
解答: 解:拋物線焦點(diǎn)坐標(biāo)F(0.5,0),準(zhǔn)線方程:x=-0.5
設(shè)A(x1,y1),B(x2,y2),C(x3,y3
FA
+
FB
+
FC
=
0
,
∴點(diǎn)F是△ABC重心,
∴x1+x2+x3=1.5.
再由拋物線的定義可得|FA|=x1-(-0.5)=x1+0.5,|FB|=x2-(-0.5)=x2+0.5,|FC|=x3-(-0.5)=x3+0.5,
∴|
FA
|+|
FB
|+|
FC
|=x1+0.5+x2+0.5+x3+0.5=3,
故答案為:3.
點(diǎn)評(píng):本題考查三角形的重心坐標(biāo)公式,拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,求得x1+x2+x3的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log3x的定義域是[1,9],記函數(shù)y=[f(x)]2-f(x2)的值域?yàn)锳.
(1)求集合A;
(2)設(shè)集合B={x|(x+a-1)(x-2a-5)<0},若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果f(
1
x
)=
x
1-x
,則當(dāng)x≠0且x≠1時(shí),f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(θ+
π
3
)=
10
10
,θ∈(0,
π
2
),則cos(2θ-
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x2+x≤43x-2的解集為M,求函數(shù)f(x)=log2(2x)log2
x
16
(x∈M)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C1:x2+y2-2tx+t2-4=0與圓C2:x2+y2+2x-4ty+4t2-8=0相交,則t的取值范圍是( 。
A、-
12
5
<t<-
2
5
B、-
12
5
<t<0
C、-
12
5
<t<2
D、-
12
5
<t<-
2
5
或0<t<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知f(A)=
[cos(π-2A)-1]sin(π+
A
2
)sin(
π
2
-
A
2
)
sin2(
π
2
-
A
2
)-sin2(π-
A
2
)

(1)求f(A)的最大值;
(2)當(dāng)f(A)取得最大值時(shí),A+B=
12
,如果AC=
6
,求AB邊和BC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,甲船以每小時(shí)30
2
海里的速度向正北方向航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西60°方向的B2處,此時(shí)兩船相距10
2
海里,則乙船每小時(shí)航行
 
海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知角θ終邊上一點(diǎn)P(-3,3),先化簡(jiǎn)式子
sin(θ-π)cos(
π
2
+θ)
cosθsin(θ+4π)
,再求值;
(2)已知tanα=
1
3
,求tan(π-2α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案