【題目】已知向量且函數(shù),若函數(shù)f(x)的圖象上兩個相鄰的對稱軸距離為.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的表達(dá)式并其對稱軸;
(3)若方程f(x)=m(m>0)在時,有兩個不同實數(shù)根x1,x2,求實數(shù)m的取值范圍,并求出x1+x2的值.
【答案】(1);(2), 對稱軸為;(3),,.
【解析】
(1) 根據(jù)向量和函數(shù),利用數(shù)量積結(jié)合倍角公式和輔助角法得到,,再根據(jù)函數(shù)f(x)的圖象上兩個相鄰的對稱軸距離為求解.
(2)依據(jù)左加右減,將函數(shù)y=f(x)的圖象向左平移個單位后,得到函數(shù),令求其對稱軸.
(3)作出函數(shù)f(x)在上圖象,根據(jù)函數(shù)y=f(x)與直線y=m在上有兩個交點求解.再令,求對稱軸.
(1),
∵函數(shù)f(x)的圖象上兩個相鄰的對稱軸距離為,
∴,
∴,
∴ω=1,
故函數(shù)f(x)的解析式為;
(2)依題意,,
令,則,
∴函數(shù)g(x)的對稱軸為;
(3)∵,
∴,
∴,
函數(shù)f(x)在上的草圖如下,
依題意,函數(shù)y=f(x)與直線y=m在上有兩個交點,則,
令,則,
∴函數(shù)f(x)在上的對稱軸為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,過點的直線與拋物線相交于兩點,與拋物線的準(zhǔn)線相交于點, ,則與的面積之比__________.
【答案】
【解析】
由題意可得拋物線的焦點的坐標(biāo)為,準(zhǔn)線方程為。
如圖,設(shè),過A,B分別向拋物線的準(zhǔn)線作垂線,垂足分別為E,N,則
,解得。
把代入拋物線,解得。
∴直線AB經(jīng)過點與點,
故直線AB的方程為,代入拋物線方程解得。
∴。
在中, ,
∴
∴。答案:
點睛:
在解決與拋物線有關(guān)的問題時,要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當(dāng)已知曲線是拋物線時,拋物線上的點M滿足定義,它到準(zhǔn)線的距離為d,則|MF|=d,可解決有關(guān)距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.
【題型】填空題
【結(jié)束】
17
【題目】已知三個內(nèi)角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班舉行電腦漢字錄入比賽,參賽學(xué)生每分鐘錄入漢字的個數(shù)經(jīng)統(tǒng)計計算后填入下表,某同學(xué)根據(jù)表中數(shù)據(jù)分析得出的結(jié)論正確的是( )
班級 | 參加人數(shù) | 中位數(shù) | 方差 | 平均數(shù) |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
A.甲、乙兩班學(xué)生成績的平均數(shù)相同
B.甲班的成績波動比乙班的成績波動大
C.乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字?jǐn)?shù)≥150個為優(yōu)秀)
D.甲班成績的眾數(shù)小于乙班成績的眾數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
【答案】(1);(2)見解析
【解析】試題分析:(1)甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,
②不同的角度可以有不同的答案
試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,
乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:
,
(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則
,
,
乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則
,
②、答案一:
由以上的計算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日薪收入波動相對較小,所以小明應(yīng)選擇甲方案.
答案二:
由以上的計算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.
【題型】解答題
【結(jié)束】
20
【題目】已知橢圓: 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當(dāng)時, 的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月日至月日每天的晝夜溫差與實驗室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,將曲線 (為參數(shù)) 上任意一點經(jīng)過伸縮變換后得到曲線的圖形.以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(Ⅰ)求曲線和直線的普通方程;
(Ⅱ)點P為曲線上的任意一點,求點P到直線的距離的最大值及取得最大值時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資人欲將5百萬元資金投人甲、乙兩種理財產(chǎn)品,根據(jù)銀行預(yù)測,甲、乙兩種理財產(chǎn)品的收益與投入資金的關(guān)系式分別為,,其中為常數(shù)且.設(shè)對乙種產(chǎn)品投入資金百萬元.
(Ⅰ)當(dāng)時,如何進(jìn)行投資才能使得總收益最大;(總收益)
(Ⅱ)銀行為了吸儲,考慮到投資人的收益,無論投資人資金如何分配,要使得總收益不低于0.45百萬元,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ()的離心率為,且點在橢圓上,設(shè)與平行的直線與橢圓相交于, 兩點,直線, 分別與軸正半軸交于, 兩點.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)判斷的值是否為定值,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com