【題目】甲、乙兩班舉行電腦漢字錄入比賽,參賽學(xué)生每分鐘錄入漢字的個(gè)數(shù)經(jīng)統(tǒng)計(jì)計(jì)算后填入下表,某同學(xué)根據(jù)表中數(shù)據(jù)分析得出的結(jié)論正確的是( )
班級(jí) | 參加人數(shù) | 中位數(shù) | 方差 | 平均數(shù) |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
A.甲、乙兩班學(xué)生成績的平均數(shù)相同
B.甲班的成績波動(dòng)比乙班的成績波動(dòng)大
C.乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字?jǐn)?shù)≥150個(gè)為優(yōu)秀)
D.甲班成績的眾數(shù)小于乙班成績的眾數(shù)
【答案】ABC
【解析】
根據(jù)圖表直接計(jì)算平均數(shù)、方差和眾數(shù)與甲、乙兩班學(xué)生每分鐘輸入漢字?jǐn)?shù)≥150個(gè)的人數(shù)分析即可.
甲、乙兩班學(xué)生成績的平均數(shù)都是35,故兩班成績的平均數(shù)相同,A正確;,甲班成績不如乙班穩(wěn)定,即甲班的成績波動(dòng)較大,B正確.
甲、乙兩班人數(shù)相同,但甲班的中位數(shù)為149,乙班的中位數(shù)為151,從而易知乙班不少于150個(gè)的人數(shù)要多于甲班,C正確;由題表看不出兩班學(xué)生成績的眾數(shù),D錯(cuò)誤.
故選:ABC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù)
C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓的右頂點(diǎn),過點(diǎn)的直線與橢圓交于, 兩點(diǎn),直線, 與直線分別交于, 兩點(diǎn).求證:點(diǎn)在以為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn)。
(Ⅰ)寫出的方程;
(Ⅱ)若,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;
(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長.若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,已知是正三角形, 平面為的中點(diǎn), 在棱上,且.
(1)求三棱錐的體積;
(2)求證: 平面;
(3)若為中點(diǎn), 在棱上,且,求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量且函數(shù),若函數(shù)f(x)的圖象上兩個(gè)相鄰的對(duì)稱軸距離為.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的表達(dá)式并其對(duì)稱軸;
(3)若方程f(x)=m(m>0)在時(shí),有兩個(gè)不同實(shí)數(shù)根x1,x2,求實(shí)數(shù)m的取值范圍,并求出x1+x2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(–1,2),B(2,8)以及,=–13,求點(diǎn)C、D的坐標(biāo)和的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com