【題目】在長(zhǎng)方體中,已知,,,E、F分別是線段AB、BC上的點(diǎn),且.
(1)求二面角的正切值;
(2)求直線與所成角的余弦值.
【答案】(1);(2).
【解析】
以A為原點(diǎn),分別為x軸,y軸,z軸的正向建立空間直角坐標(biāo)系,寫(xiě)出要用的點(diǎn)的坐標(biāo),設(shè)出平面的法向量的坐標(biāo),根據(jù)法向量與平面上的向量垂直,利用數(shù)量積表示出兩個(gè)向量的坐標(biāo)之間的關(guān)系,求出平面的一個(gè)法向量,根據(jù)兩個(gè)向量之間的夾角求出結(jié)果把兩條直線對(duì)應(yīng)的點(diǎn)的坐標(biāo)寫(xiě)出來(lái),根據(jù)兩個(gè)向量之間的夾角表示出異面直線的夾角.
以A為原點(diǎn),分別為x軸,y軸,z軸的正向建立空間直角坐標(biāo)系,
則有3,、3,、0,、1,、3,
于是,2,
設(shè)向量與平面垂直,
則有
,其中
取則是一個(gè)與平面垂直的向量,
向量0,與平面CDE垂直,
與所成的角為二面角的平面角
,
二面角的正切值為;
設(shè)與所成角為,則,
直線與所成的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)方形區(qū)域,,,在邊的中點(diǎn)處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角始終為,設(shè),探照燈照射在長(zhǎng)方形內(nèi)部區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形,點(diǎn)為線段的中點(diǎn),且 . , .現(xiàn)將△沿進(jìn)行翻折,使得 °,得到圖形如圖所示,連接.
(Ⅰ)若點(diǎn)在線段上,證明: ;
(Ⅱ)若點(diǎn)為的中點(diǎn),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在底面是正三角形、側(cè)棱垂直于底面的三棱柱ABC﹣A1B1C1中,底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為2a,點(diǎn)M是A1B1的中點(diǎn).
(1)證明:MC1⊥AB1.
(2)求直線AC1與側(cè)面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,平面,、分別是線段、的中點(diǎn),.
(1)證明:平面;
(2)設(shè)點(diǎn)是線段的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著共享單車(chē)的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走人大家的世界,共享汽車(chē)、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮廣元某景點(diǎn)設(shè)有共享電動(dòng)車(chē)租車(chē)點(diǎn),共享電動(dòng)車(chē)的收費(fèi)標(biāo)準(zhǔn)是每小時(shí)2元不足1小時(shí)的部分按1小時(shí)計(jì)算甲、乙兩人各租一輛電動(dòng)車(chē),若甲、乙不超過(guò)一小時(shí)還車(chē)的概率分別為;一小時(shí)以上且不超過(guò)兩小時(shí)還車(chē)的概率分別為;兩人租車(chē)時(shí)間都不會(huì)超過(guò)三小時(shí).
Ⅰ求甲、乙兩人所付租車(chē)費(fèi)用相同的概率;
Ⅱ設(shè)甲、乙兩人所付的租車(chē)費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足條件,且
(1)計(jì)算,請(qǐng)猜測(cè)數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)請(qǐng)分別構(gòu)造一個(gè)二階和三階行列式,使它們的值均為,其中,要求所構(gòu)造的三階行列式主對(duì)角線下方的元素均為零,并用按某行或者某列展開(kāi)的方法驗(yàn)證三階行列式的值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com