分析 先利用函數的奇偶性的定義判斷出函數的奇偶性,再由導數判斷出函數的單調性,利用奇偶性將不等式進行轉化,再利用單調性去掉不等式中的符號“f”,轉化具體不等式,借助一次函數的性質可得x的不等式組,解出可得答案.
解答 解:由題意得,函數的定義域是R,
且f(-x)=(-x)3+3(-x)=-(x3+3x)=-f(x),
所以f(x)是奇函數,
又f'(x)=3x2+3>0,所以f(x)在R上單調遞增,
所以f(mx-2)+f(x)<0可化為:f(mx-2)<-f(x)=f(-x),
由f(x)遞增知:mx-2<-x,即mx+x-2<0,
則對任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,
等價于對任意的m∈[-2,2],mx+x-2<0恒成立,
所以 $\left\{\begin{array}{l}{-2x+x-2<0}\\{2x+x-2<0}\end{array}\right.$,解得-2<x<$\frac{2}{3}$,
即x的取值范圍是(-2,$\frac{2}{3}$),
故答案為:(-2,$\frac{2}{3}$).
點評 本題考查恒成立問題,函數的奇偶性與單調性的綜合應用,考查轉化思想,以及學生靈活運用知識解決問題的能力.
科目:高中數學 來源: 題型:選擇題
A. | {0}⊆M | B. | M=∅ | C. | -1∈M | D. | 2∈M |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12 | B. | 20 | C. | 2$\sqrt{41}$ | D. | 4$\sqrt{41}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 橫坐標向左平動$\frac{π}{4}$個單位長度 | B. | 橫坐標向右平移$\frac{π}{4}$個單位長度 | ||
C. | 橫坐標向左平移$\frac{π}{8}$個單位長度 | D. | 橫坐標向右平移$\frac{π}{8}$個單位長度 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=9x+8 | B. | f(x)=3x+2 | ||
C. | f(x)=-3x-4 | D. | f(x)=3x+2或f(x)=-3x-4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com