精英家教網 > 高中數學 > 題目詳情

【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點的距離均不少于80 m.經測量,點A位于點O正北方向60 m,C位于點O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當OM多長時,圓形保護區(qū)的面積最大?

【答案】(1) 150 m (2) |OM|=10 m

【解析】試題分析:本題是應用題,我們可用解析法來解決,為此以為原點,以向東,向北為坐標軸建立直角坐標系.1點坐標炎, ,因此要求的長,就要求得點坐標,已知說明直線斜率為,這樣直線方程可立即寫出,又,故斜率也能得出,這樣方程已知,兩條直線的交點的坐標隨之而得;(2)實質就是圓半徑最大,即線段上哪個點到直線的距離最大,為此設,由,圓半徑是圓心到直線的距離,而求它的最大值,要考慮條件古橋兩端到該圓上任一點的距離均不少于80,列出不等式組,可求得的范圍,進而求得最大值.當然本題如果用解三角形的知識也可以解決.

試題解析:

1)如圖,以軸建立直角坐標系,則, ,由題意,直線方程為.又,故直線方程為,由,解得,即,所以

2)設,即 ,由(1)直線的一般方程為,圓的半徑為,由題意要求,由于,因此 ,,所以當時, 取得最大值,此時圓面積最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求曲線在點處的切線的斜率;

(Ⅱ)判斷方程的導數在區(qū)間內的根的個數說明理由;

(Ⅲ)若函數在區(qū)間內有且只有一個極值點的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

時,求函數的單調區(qū)間;

對任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知兩個正方形ABCDDCEF不在同一平面內,M,N分別為ABDF的中點.

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的導函數f′(x),且對任意x>0,都有f′(x)>.

(1)判斷函數F(x)=在(0,+∞)上的單調性;

(2)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請將(2)中結論推廣到一般形式,并證明你所推廣的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E: 的焦點在x軸上,A是E的左頂點,斜率為k(k0)的直線交E于A,M兩點,點N在E上,MANA

(1)當t=4,|AM|=|AN|時,求AMN的面積;

(2)當2|AM|=|AN|時,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

)求的單調區(qū)間.

)證明:當時,方程在區(qū)間上只有一個零點.

)設,其中恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點,FB1C1的中點.

(1)求證:A1F∥平面ECC1;

(2)在CD上是否存在一點G,使BG⊥平面ECC1?若存在,請確定點G的位置,并證明你的結論,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

同步練習冊答案