【題目】已知函數, .
()求的單調區(qū)間.
()證明:當時,方程在區(qū)間上只有一個零點.
()設,其中若恒成立,求的取值范圍.
【答案】()的單調減區(qū)間為,單調增區(qū)間為.()見解析;().
【解析】試題分析:()求導得,可得的單調區(qū)間.
()設, ,由()可知在,上單調遞增,且, ,可得證.
()恒成立即函數的最小值為 ,利用導數可求得,
整理可得,解得.
試題解析:()由已知,
令,
則,令,
則,
故的單調減區(qū)間為,單調增區(qū)間為.
()設, ,
則,
由()可知在,上單調遞增,
且, ,
∴在上只有個零點,
故當,方程在區(qū)間上只有一個零點.
(), , 的定義域是,
,
令,
則,
由()得,在區(qū)間上只有一個零點,
且是增函數,不妨設的零點是,
則當時, ,
即, 單調遞減.
當時, ,
即, 單調遞增,
∴函數的最小值為 ,
由,得,
故,
根據題意,
即,解得,
故實數的取值范圍是.
科目:高中數學 來源: 題型:
【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80 m.經測量,點A位于點O正北方向60 m處,點C位于點O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當OM多長時,圓形保護區(qū)的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+),則下面結論正確的是( 。
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·貴州適應性考試)如圖,在正方體ABCDA1B1C1D1中,點P是線段A1C1上的動點,則三棱錐PBCD 的俯視圖與正視圖面積之比的最大值為( )
A. 1 B.
C. D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線上一點到其焦點的距離為4,橢圓 的離心率,且過拋物線的焦點.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知, ,求證: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列各項均為正數, , ,且對任意恒成立,記的前項和為.
(1)若,求的值;
(2)證明:對任意正實數, 成等比數列;
(3)是否存在正實數,使得數列為等比數列.若存在,求出此時和的表達式;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com