【題目】在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80 m.經(jīng)測量,點A位于點O正北方向60 m處,點C位于點O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當OM多長時,圓形保護區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線上一點到其焦點的距離為4,橢圓 的離心率,且過拋物線的焦點.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知, ,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面, .過的平面交于點,交于點.
(l)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,函數(shù)的極大值為,求實數(shù)的值;
(2)若對任意的, 在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列各項均為正數(shù), , ,且對任意恒成立,記的前項和為.
(1)若,求的值;
(2)證明:對任意正實數(shù), 成等比數(shù)列;
(3)是否存在正實數(shù),使得數(shù)列為等比數(shù)列.若存在,求出此時和的表達式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有極值,且在處的切線與直線垂直.
(1)求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得函數(shù)的極小值為.若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中, 為坐標原點, 、是雙曲線上的兩個動點,動點滿足,直線與直線斜率之積為2,已知平面內(nèi)存在兩定點、,使得為定值,則該定值為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com