設(shè)一直角三角形的兩條直角邊長均是區(qū)間(0,π)上的任意實數(shù),則斜邊長小于
π
的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:根據(jù)幾何概型的概率公式即可得到結(jié)論.
解答: 解:設(shè)兩個直角邊長為a,b,
則由條件可知
0<a<π
0<b<π
,
則斜邊長小于
π
的事件為,a2+b2<π,
則由幾何概型的概率可知所求的概率P=
1
4
π×π
π×π
=
1
4
,
故答案為:
1
4
點評:本題主要考查幾何概型的概率計算,根據(jù)條件求出對應(yīng)的區(qū)域面積是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2-9n+15,第k項滿足5<ak<8,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,曲線c1:y2=2px(p>0)與曲線c2:(x-6)2+y2=36只有三個公共點O,M,N,其中O為坐標原點,且
OM
ON
=0.
(1)求曲線c1的方程;
(2)過定點M(3,2)的直線l與曲線c1交于A,B兩點,若點M是線段AB的中點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足不等式
x-2≤0
y-1≤0
x+2y-3≥0
,且目標函數(shù)z=x-2y的最大值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班有6名班干部,其中男生4人,女生2人,任選3人參加學校的義務(wù)勞動.
(1)設(shè)所選3人中女生人數(shù)為X,求X的分布列;
(2)求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
1
3
x3+(m-
1
2
)x2+4m2
x(m為常數(shù))在x=1處取極值,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,
an+1
-
an
=1,則使an<25成立的n的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓心在第二象限,半徑為2
2
的圓C與直線y=x相切于坐標原點O.
(1)求圓C的方程;
(2)試探求圓C上是否存在異于原點的點Q,使Q到定點F(4,0)的距離等于線段OF的長,若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=1,a2=
5
3
,an+2=
5
3
an+1-
2
3
an
(n=1,2,3,…).
(1)令bn=an+1-an(n=1,2,3,…),求數(shù)列{bn}及{an}的通項公式;
(2)求數(shù)列{an+bn}的前n項和為Sn

查看答案和解析>>

同步練習冊答案