【題目】已知奇函數(shù)上單調(diào)遞減,且,則不等式的解集________.

【答案】

【解析】

根據(jù)題意,由奇函數(shù)的性質(zhì)可得f(﹣3)=0,結(jié)合函數(shù)的單調(diào)性分析可得fx)>0fx)<0的解集,又由(x1fx)>0,分析可得x的取值范圍,即可得答案.

根據(jù)題意,fx)為奇函數(shù)且f3)=0,則f(﹣3)=0,

又由fx)在(﹣∞,0)上單調(diào)遞減,則在(﹣∞,﹣3)上,fx)>0,在(﹣3,0)上,fx)<0,

又由fx)為奇函數(shù),則在(03)上,fx)>0,在(3,+∞)上,fx)<0,

fx)<0的解集為(﹣30)∪(3,+∞),fx)>0的解集為(﹣∞,﹣3)∪(0,3);

x1fx)>0,

分析可得:﹣1x01x3

故不等式的解集為(﹣3,0)∪(13);

故答案為(﹣3,0)∪(1,3);

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設(shè)備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額成本)

22019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)當a=1時,求函數(shù)f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請專業(yè)培訓機構(gòu)進行培訓.培訓的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓材料費;另一部分是給培訓機構(gòu)繳納的培訓費.若參加培訓的員工人數(shù)不超過30人,則每人收取培訓費1000元;若參加培訓的員工人數(shù)超過30人,則每超過1人,人均培訓費減少20元.設(shè)公司參加培訓的員工人數(shù)為x人,此次培訓的總費用為y元.

(1)求出yx之間的函數(shù)關(guān)系式;

(2)請你預(yù)算:公司此次培訓的總費用最多需要多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)討論的單調(diào)性;

(2)若函數(shù)有兩個極值點、,且,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過第一、二、三象限的概率;

(2)某校早上8:10開始上課,假設(shè)該校學生小張與小王在早上7:30~8:00之間到校,且每人到該時間段內(nèi)到校時刻是等可能的,求兩人到校時刻相差10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當m=1時,若方程在區(qū)間上有唯一的實數(shù)解,求實數(shù)a的取值范圍;

查看答案和解析>>

同步練習冊答案