已知點(diǎn)E(-
1
2
,0),點(diǎn)F是圓(x-
1
2
2+y2=4上的動(dòng)點(diǎn),線段EF的垂直平分線交FM于點(diǎn)P,求動(dòng)點(diǎn)P的軌跡方程.
考點(diǎn):軌跡方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:依題意可知|FP|+|PM|=2,|PF|=|PE|,可得|EP|+|PM|=2,根據(jù)橢圓的定義可知,點(diǎn)P的軌跡為以E,M為焦點(diǎn)的橢圓,即可求出動(dòng)點(diǎn)P的軌跡方程.
解答: 解:依題意可知|FP|+|PM|=2,|PF|=|PE|
∴|EP|+|PM|=2
根據(jù)橢圓的定義可知,點(diǎn)P的軌跡為以E,M為焦點(diǎn)的橢圓,a=1,c=
1
2
,則有b=
3
2
,
故點(diǎn)P的軌跡方程為x2+
y2
3
4
=1
點(diǎn)評:本題考查橢圓的定義與標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,正確運(yùn)用橢圓的定義是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動(dòng)型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列{an},每年發(fā)放的電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列{bn},完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;
a1=10a2=9.5a3=
 
     
a4=
 
       
b1=2b2=
 
b3=
 
  
 b4=
 
       
(2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga
1
a
-
1
x
),其中0<a<1.
(1)證明f(x)在區(qū)間(a,+∞)上是減函數(shù);
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
3
,直線l:y=x+2和圓O:x2+y2=b2相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點(diǎn),作直線m,與O相交于兩點(diǎn)R,S,已知△ORS的面積為
3
2
,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-bxlnx,其圖象經(jīng)過點(diǎn)(1,1),且在點(diǎn)(e,f(e))處的切線斜率為3(e為自然對數(shù)的底數(shù)).
(1)求實(shí)數(shù)a、b的值;
(2)若k∈Z,且k<
f(x)
x-1
對任意x>1恒成立,求k的最大值;
(3)證明:2ln2+3ln3+…+nlnn>(n-1)2(n∈N*,n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓P的圓心在x軸,且過點(diǎn)A(0,5)、B(3,4).
(1)求圓P的方程;
(2)證明:過點(diǎn)A任意作兩條傾斜角互補(bǔ)的直線,分別交圓P于E、F兩點(diǎn)(E、F不重合),則直線EF的斜率為定值,且定值為0;
(3)經(jīng)研究發(fā)現(xiàn)將(2)中的點(diǎn)A改為點(diǎn)B,其余條件不變,直線EF的斜率也為定值,且定值為
3
4
,若點(diǎn)M(x0,y0)(y0≠0)為圓P上任意一點(diǎn),請給出類似于(2)的正確命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求x的取值范圍:(x+2)(x-a)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={a,0},N={x|x2-3x<0,x∈Z},而且M∩N={1},若P=M∪N,寫出集合P的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓x2+2y2=a2(a>0)的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓C的方程;
(2)已知直線y=k(x-1)與橢圓C交于A、B兩點(diǎn),若點(diǎn)M(
11
4
,0),求證
MA
MB
為定值.

查看答案和解析>>

同步練習(xí)冊答案