【題目】已知Sn為數列{an}的前n項和,且an>0,an2+an=2Sn .
(1)求數列{an}的通項公式;
(2)令bn= ,記Tn=b12b32…b2n﹣12 , 求證:Tn≥ .
【答案】
(1)解:∵an2+an=2Sn,
∴an﹣12+an﹣1=2Sn﹣1,
∴an2+an﹣an﹣12﹣an﹣1=2an,
∴(an+an﹣1)(an﹣an﹣1﹣1)=0,
∵an>0,
∴an﹣an﹣1﹣1=0,
∴an﹣an﹣1=1,
∵n=1時
∴a12+a1=2S1=2a1,
解得a1=1,
∴數列{an}是以為首項以1為公差的等差數列,
∴an=1+(n﹣1)=n
(2)解:∵bn= = ,
∴數列{bn}是遞增數列,
∴b2n>b2n﹣1,
∴b2nb2n﹣1>(b2n﹣1)2,
∴Tn=b12b32…b2n﹣12≥b1b1b2b3b4…b2n= × × × ×…× × = ,當n=1時取等號,
∴Tn≥
【解析】(1)利用遞推關系可得an2+an=2Sn , an﹣12+an﹣1=2Sn﹣1 , 兩式相減化簡后得到an﹣an﹣1=1,繼而得到數列{an}是以為首項以1為公差的等差數列,求出通項公式即可(2)bn= = ,數列{bn}是遞增數列,利用放縮法即可證明.
【考點精析】通過靈活運用數列的前n項和和數列的通項公式,掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式即可以解答此題.
科目:高中數學 來源: 題型:
【題目】一個路口的紅綠燈,紅燈亮的時間為40秒,黃燈亮的時間為5秒,綠燈亮的時間為50秒(沒有兩燈同時亮),當你到達路口時,看見下列三種情況的概率各是多少?
(1)紅燈;
(2)黃燈;
(3)不是紅燈.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為 ( )
(參考數據: )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y﹣4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓過點, , 分別為橢圓的右、下頂點,且.
(1)求橢圓的方程;
(2)設點在橢圓內,滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點, .
(i) 若, 關于軸對稱,求直線的斜率;
(ii) 求證: 的面積與的面積相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了滿足市民出行的需要和節(jié)能環(huán)保的要求,在公共場所提供單車共享服務,某部門為了對該城市共享單車進行監(jiān)管,隨機選取了位市民對共享單車的情況逬行問卷調査,并根根據其滿意度評分值(滿分分)制作的莖葉圖如圖所示:
(1)分別計算男性打分的平均數和女性打分的中位數;
(2)從打分在分以下(不含分)的市民抽取人,求有女性被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項不為零的數列的前項和為,且, , .
(1)若成等比數列,求實數的值;
(2)若成等差數列,
①求數列的通項公式;
②在與間插入個正數,共同組成公比為的等比數列,若不等式對任意的恒成立,求實數的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com