【題目】在中,角, , 的對邊分別為, , .已知.
(1)求角的大;
(2)若, ,求的值.
【答案】(1)B.(2).
【解析】試題分析:
(1)邊化角,利用兩角和差正余弦公式可得,則;
(2)利用正弦定理結(jié)合同角三角函數(shù)基本關(guān)系求得,然后結(jié)合題意可得.
試題解析:
(1)由已知得2acosBccosBbcosC,由正弦定理得,
2sinAcosBsinCcosBsinBcosCsin(BC),
又BCA,所以2sinAcosBsinA,又A(0,),sinA0,所以cosB,
又B(0,),所以B.
(2)由正弦定理得,得sinA,
又ab,所以A為銳角,則cosA
,
又ABC,得sinCsin(AB) sin(AB)
sinAcosBcosAsinB .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國共產(chǎn)黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名同學(xué)中至少有1人參加,且當這3名同學(xué)都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于公差d>0的等差數(shù)列{an}的四個命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的不等式x2+2ax+4>0,對一切x∈R恒成立,q:函數(shù)f(x)=(3﹣2a)x是增函數(shù),若p或q為真,p且q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項和,且an>0,an2+an=2Sn .
(1)求數(shù)列{an}的通項公式;
(2)令bn= ,記Tn=b12b32…b2n﹣12 , 求證:Tn≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知實數(shù)a,b,則“a>b”是“a2>b2”的必要不充分條件
B.“存在x0∈R,使得 ”的否定是“對任意x∈R,均有x2﹣1>0”
C.函數(shù) 的零點在區(qū)間 內(nèi)
D.設(shè)m,n是兩條直線,α,β是空間中兩個平面,若m?α,n?β,m⊥n,則α⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(﹣∞,﹣2)∪(0,+∞).
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)g(x)=f(x)+mx﹣2在(2,+∞)上單調(diào)遞增,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E,F(xiàn)分別在邊BC,DC上, =λ , =μ ,若 =1, =﹣ ,則λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: 的離心率為 ,焦距為 ,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點. (Ⅰ)求C1與C2的標準方程;
(Ⅱ)C1上不同于F的兩點P,Q滿足 ,且直線PQ與C2相切,求△FPQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com