f(x)=lnx+2-x的零點(diǎn)所在區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:代入1,2,3,4;判斷函數(shù)值的正負(fù),利用函數(shù)零點(diǎn)的判定定理即可.
解答: 解:f(1)=ln1+2-1>0,
f(2)=ln2+2-2=ln2>0,
f(3)=ln3+2-3=ln3-1>0,
f(4)=ln4+2-4=ln4-2<0,
故選D.
點(diǎn)評(píng):本題考查了函數(shù)零點(diǎn)的判定定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊為a,b,c,且A=60°,5sinB=3sinC
(1)若△ABC的面積為
15
3
4
,求a,b,c的長;
(2)在(1)的條件下,若把三角形的每條邊都增加相同的長度x(x>0),則△ABC是什么三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A1、A2分別為橢圓C:
x2
9
+
y2
5
=1的左右頂點(diǎn),點(diǎn)P為橢圓C上任意一點(diǎn),則
PA1
PA2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-2ax+b,當(dāng)x=-1時(shí),f(x)取最小值-8,記集合A={x|f(x)>0},B={x||x-t|≤1}
(Ⅰ)當(dāng)t=1時(shí),求(∁RA)∪B;
(Ⅱ)設(shè)命題P:A∩B≠∅,若¬P為真命題,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線的斜率為3.
(1)求實(shí)數(shù)a的值;
(2)若f(x)≤kx2對(duì)任意x>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=|x2-2x-3|-a有四個(gè)零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象頂點(diǎn)為A(-1,2),且圖象經(jīng)過原點(diǎn),
(1)求函數(shù)y=f(x)的解析式
(2)求函數(shù)y=f(2x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p為非負(fù)實(shí)數(shù),隨機(jī)變量ξ的概率分布為圖表所示,則Dξ的最大值為
 

ξ012
P
1
2
-P
P
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a2,a4是方程x2-2x-2=0的兩個(gè)根,則S5=( 。
A、
5
2
B、5
C、-
5
2
D、-5

查看答案和解析>>

同步練習(xí)冊(cè)答案