設(shè)甲乙丙三人每次射擊命中目標(biāo)的概率分別為0.7,0.6和0.5,若三人各向目標(biāo)射擊一次,求
(1)至少有一人命中目標(biāo)的概率.
(2)恰有兩人命中目標(biāo)的概率.
考點(diǎn):相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計(jì)
分析:(1)先利用相互獨(dú)立事件的概率乘法公式求得三人都沒有擊中目標(biāo)個(gè)概率,再用1減去此概率,即得所求.
(2)先利用相互獨(dú)立事件的概率乘法公式求得只有甲乙命中目標(biāo)的概率、只有甲丙命中目標(biāo)的概率、只有乙丙命中目標(biāo)的概率,再把這三個(gè)值相加,即得所求.
解答: 解:(1)三人都沒有擊中目標(biāo)個(gè)概率為 (1-0.7)(1-0.6)(1-0.5)=0.06,
故至少有一人命中目標(biāo)的概率為1-0.06=0.94.
(2)只有甲乙命中目標(biāo)的概率為0.7×0.6×(1-0.5)=0.21,
 只有甲丙命中目標(biāo)的概率為0.7×(1-0.6)×0.5=0.14,
 只有乙丙命中目標(biāo)的概率為(1-0.7)×0.6×0.5=0.09,
∴恰有兩人命中目標(biāo)的概率為0.21+0.14+0.09=0.44.
點(diǎn)評(píng):本題主要考查相互獨(dú)立事件的概率乘法公式,所求的事件的概率與它的對(duì)立事件的概率之間的關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過其右焦點(diǎn)F且與漸近線y=-
b
a
x平行的直線分別與雙曲線的右支和另一條漸近線交于A、B兩點(diǎn),且
FA
=
AB
,則雙曲線的離心率為( 。
A、
3
2
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
n-1+2(n為正整數(shù)).
(Ⅰ)令bn=2nan,求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令cn=
n+1
n
an,Tn=c1+c2+…+cn,求證:1≤Tn≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=
S2
b2

(1)求an與bn;
(2)求
1
S1
+
1
S2
+…+
1
Sn
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
3x-2
+
3x-4
=5,求
3x-2
-
3x-4
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)镽,且當(dāng)x∈R時(shí),f(m-x)+f(m+x)=2n恒成立,
(1)求證:y=f(x)的圖象關(guān)于點(diǎn)(m,n)對(duì)稱;
(2)求函數(shù)f(x)=x3+2x2圖象的一個(gè)對(duì)稱點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在無窮數(shù)列{an}中,a1=1,對(duì)于任意n∈N*,都有an∈N*,an<an+1.設(shè)m∈N*,記使得an≤m成立的n的最大值為bm
(Ⅰ)設(shè)數(shù)列{an}為1,2,4,10,…,寫出b1,b2,b3的值;
(Ⅱ)若{an}是公差為2的等差數(shù)列,數(shù)列{bm}的前m項(xiàng)的和為Sm,求使得Sm>2014成立的m的最小值;
(Ⅲ)設(shè)ap=q,a1+a2+…+ap=A,b1+b2+…+bq=B,請(qǐng)你直接寫出B與A的關(guān)系式,不需寫推理過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別a,b,c且c=3,C=
π
3
,若sin(A+C)=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a3=8,an+1=2an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案