【題目】設(shè)函數(shù).

1)當(dāng)時,求函數(shù)在點處的切線方程;

2是函數(shù)的極值點,求函數(shù)的單調(diào)區(qū)間;

3)在(2)的條件下,,若,,使不等式恒成立,求的取值范圍.

【答案】(1);(2)在上單調(diào)遞增,在上單調(diào)遞減;(3

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),再求出,,由導(dǎo)數(shù)得幾何意義知切線的斜率為且過點,即可寫出直線的點斜式方程;(2)是函數(shù)的極值點可知,求出,令結(jié)合定義域即可求出函數(shù)的單調(diào)區(qū)間;(3),則題意等價于,利用分析的單調(diào)性從而求出最小值為4,所以使得函數(shù),由有解即可求出的取值范圍.

1的定義域為,時,,,

,所以切線方程為,即.

2,

是函數(shù)的極值點,,可得,

所以,令,即,

解得,結(jié)合定義域可知上單調(diào)遞增,在上單調(diào)遞減.

3)令,,,

使得恒成立,等價于,

因為,所以,,即,

所以上單調(diào)遞增,,

使得函數(shù),即轉(zhuǎn)化為有解,

,所以,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關(guān)于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中.

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng),證明不等式恒成立(其中,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有以下三個結(jié)論:

①函數(shù)恒有兩個零點,且兩個零點之積為

②函數(shù)的極值點不可能是;

③函數(shù)必有最小值.

其中正確結(jié)論的個數(shù)有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,對于,,定義的差為;之間的距離為.

1)若,試寫出所有可能的;

2,證明:;

3三個數(shù)中是否一定有偶數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標(biāo)系.

(1)寫出的極坐標(biāo)方程,并將化為普通方程;

(2)若直線的極坐標(biāo)方程為相交于兩點,

的面積(為圓的圓心).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy上取兩個定點A1,0),A2,0),再取兩個動點N10,m),N20n),且mn2.

1)求直線A1N1A2N2交點M的軌跡C的方程;

2)過R3,0)的直線與軌跡C交于P,Q,過PPNx軸且與軌跡C交于另一點NF為軌跡C的右焦點,若λ1),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點分別為,當(dāng)動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案