【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面積為,求△ABC的周長(zhǎng).
【答案】(1) C= (2) △ABC的周長(zhǎng)為+
【解析】試題分析:(1)由正弦定理得到2cosCsinC=sinC,進(jìn)而得到cosC=,∴C=;(2)根據(jù)第一問(wèn)的已求角,可由余弦定理得到(a+b)2﹣3ab=3,根據(jù)面積公式得到ab=16,結(jié)合第一個(gè)式子得到結(jié)果。
解析:
(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
利用正弦定理化簡(jiǎn)得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC,2cosCsinC=sinC
∴cosC=,∴C=
(Ⅱ)由余弦定理得3=a2+b2﹣2ab,
∴(a+b)2﹣3ab=3,
∵S= absinC= ab=, ∴ab=16,
∴(a+b)2﹣48=3,∴a+b=,
∴△ABC的周長(zhǎng)為+ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線(xiàn)性回歸方程=x+必過(guò)(,);
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則有99%以上的把握認(rèn)為這兩個(gè)變量間有關(guān)系.
其中錯(cuò)誤的個(gè)數(shù)是( )
本題可以參考獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某山區(qū)外圍有兩條相互垂直的直線(xiàn)型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線(xiàn)型公路,記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線(xiàn)為C,計(jì)劃修建的公路為l,如圖所示,M,N為C的兩個(gè)端點(diǎn),測(cè)得點(diǎn)M到l1,l2的距離分別為5千米和40千米,點(diǎn)N到l1,l2的距離分別為20千米和2.5千米,以l2,l1所在的直線(xiàn)分別為x,y軸,建立平面直角坐標(biāo)系xOy,假設(shè)曲線(xiàn)C符合函數(shù)y= (其中a,b為常數(shù))模型.
(1)求a,b的值;
(2)設(shè)公路l與曲線(xiàn)C相切于P點(diǎn),P的橫坐標(biāo)為t.
①請(qǐng)寫(xiě)出公路l長(zhǎng)度的函數(shù)解析式f(t),并寫(xiě)出其定義域;
②當(dāng)t為何值時(shí),公路l的長(zhǎng)度最短?求出最短長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是直角梯形, , , , , 平面.
(Ⅰ)上是否存在點(diǎn)使平面,若存在,指出的位置并證明,若不存在,請(qǐng)說(shuō)明理由;(Ⅱ)證明: ;
(Ⅲ)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方體中, 為的中點(diǎn),如圖所示.
(1) 證明: 平面;
(2) 求平面與平面所成銳二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,命題:對(duì),不等式恒成立;命題,使得成立.
(1)若為真命題,求的取值范圍;
(2)當(dāng)時(shí),若假, 為真,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(x)=2sin(x-A)cosx+sin(B+C)(x∈R),函數(shù)f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng).
(1)當(dāng)時(shí),求f(x)的值域;
(2)若a=7且,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),討論函數(shù)與圖像的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com