【題目】如圖,已知是直角梯形 , , , , 平面

上是否存在點(diǎn)使平面若存在指出的位置并證明,若不存在,請(qǐng)說(shuō)明理由;()證明: ;

)若,求點(diǎn)到平面的距離

【答案】證明見(jiàn)解析;(證明見(jiàn)解析;(

【解析】試題分析:

()當(dāng)中點(diǎn)時(shí)滿(mǎn)足題意,理由如下:

的中點(diǎn)為,連結(jié).由題意結(jié)合幾何關(guān)系可證得平面平面.理由面面平行的性質(zhì)定理可得平面

()由題意結(jié)合勾股定理可得理由幾何關(guān)系有據(jù)此可得平面,則

()由題意可得: ,理由體積相等轉(zhuǎn)化頂點(diǎn)可得到平面的距離為

試題解析:

當(dāng)中點(diǎn)時(shí)滿(mǎn)足題意

理由如下:

的中點(diǎn)為,連結(jié)

, ,

,且,

∴四邊形是平行四邊形,

平面,

平面

分別是的中點(diǎn),∴,

平面,

平面

,

∴平面平面

平面,

平面

Ⅱ)由已知易得

,

,即

又∵平面, 平面,

,

平面

平面,

Ⅲ)由已知得,所以

,則,由,

,

到平面的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)試討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn), ,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,設(shè)傾斜角為的直線(xiàn)的參數(shù)方程為為參數(shù))與曲線(xiàn)為參數(shù))相交于不同的兩點(diǎn)、

1)若,求線(xiàn)段的中點(diǎn)的直角坐標(biāo);

2)若直線(xiàn)的斜率為,且過(guò)已知點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)sin ωxcos ωx(ω>0)的最小正周期為π.

(1)求函數(shù)yf(x)圖象的對(duì)稱(chēng)軸方程;

(2)討論函數(shù)f(x)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過(guò)3S微克/立方米, 24小時(shí)平均濃度不得超過(guò)75微克/立方米.某市環(huán)保局隨機(jī)抽取了一居民區(qū)20162024小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如圖表:

組別

濃度(微克/立方米)

頻數(shù)天)

頻率

第一組

3

0.15

第二組

12

0.6

第三組

3

0.15

第四組

2

0.1

(Ⅰ)將這20天的測(cè)量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.

(。┣髨D中的值;

(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.

(Ⅱ)將頻率視為概率,對(duì)于2016年的某3天,記這3天中該居民區(qū)24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱平面, 為等腰直角三角形, ,且, 分別是的中點(diǎn).

(1)若的中點(diǎn),求證: 平面;

(2)若是線(xiàn)段上的任意一點(diǎn),求直線(xiàn)與平面所成角正弦的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,BC的對(duì)邊分別為a,b,c,已知

1)求C;

2)若c=ABC的面積為,求ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)與雙曲線(xiàn)的漸近線(xiàn)交于兩點(diǎn),設(shè)為雙曲線(xiàn)上任一點(diǎn),若為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿(mǎn)足條件:①PQ都在函數(shù)yf(x)的圖象上;②P,Q關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)(P,Q)是函數(shù)yf(x)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組(PQ)(Q,P)看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)f(x)有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)k的取值范圍是(  )

A. (0) B. (0,1)

C. D. (0,+)

查看答案和解析>>

同步練習(xí)冊(cè)答案