【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個(gè)人發(fā)展.某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對該校學(xué)生進(jìn)行“是否有明顯拖延癥”的調(diào)查中,隨機(jī)發(fā)放了110份問卷.對收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下 列聯(lián)表:
(1)按女生是否有明顯拖延癥進(jìn)行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機(jī)抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為 ,試求隨機(jī)變量 的分布列和數(shù)學(xué)期望;
(2)若在犯錯(cuò)誤的概率不超過 的前提下認(rèn)為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的 的值應(yīng)為多少?請說明理由.附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量 ,其中 .
獨(dú)立性檢驗(yàn)臨界值表:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列 滿足 ,且 .
(1)寫出 的前3項(xiàng),并猜想其通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1,2,3,4,5的五個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.
(1)求取出的兩個(gè)球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)球上標(biāo)號(hào)之和與標(biāo)號(hào)之積都不小于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在區(qū)間(2,4)上存在極大值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 的極坐標(biāo)方程是 ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為 軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系 中,直線 經(jīng)過點(diǎn) ,傾斜角 .
(1)寫出曲線 的直角坐標(biāo)方程和直線 的參數(shù)方程;
(2)設(shè) 與曲線 相交于 , 兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) .
(1)求函數(shù) 的最小正周期;
(2)在 中, 分別為內(nèi)角 的對邊,且 , ,求 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對兩個(gè)變量x , y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…(xn , yn),則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 必過樣本點(diǎn)的中心
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越接近于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若向量 、 、 的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無三點(diǎn)共線,且滿足下列關(guān)系(O是空間任一點(diǎn)),則能使向量 、 、 成為空間一組基底的關(guān)系是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com