【題目】斜率為1,過拋物線的焦點的直線被拋物線所截得的弦長為

A. 8 B. 6 C. 4 D. 10

【答案】A

【解析】由拋物線得x2=4y,p=2,焦點F(0,1).

斜率為1且過焦點的直線方程為y=x+1.

代入x2=4y,消去x,可得y2﹣6y﹣1=0.

∴y1+y2=6.

直線截拋物線所得的弦長為y1++y2+=y1+y2+p=6+2=8

故選A.

點睛: 在解決與拋物線有關(guān)的問題時,要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當(dāng)已知曲線是拋物線時拋物線上的點M滿足定義,它到準線的距離為d,|MF|=d,可解決有關(guān)距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義從而得到動點的軌跡是拋物線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正沿著高折起,使,若折起后四點都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率e=,連接橢圓的四個頂點得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線過橢圓的左端點A與橢圓的另一個交點為B.,AB的垂直平分線交軸于點,且·=4,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,若f(x)=(x+ )ex在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為(
A.a>0
B.a≤1
C.a>1
D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣aex)有兩個極值點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中, 是橢圓 的右頂點, 是上頂點, 是橢圓位于第三象限上的任一點,連接, 分別交坐標軸于 兩點.

(1)若點為左焦點且直線平分線段,求橢圓的離心率;

(2)求證:四邊形的面積是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax-lnx,a∈R.

(1)當(dāng)a=1時,求曲線f(x)在點(2,f(2))處的切線方程;

(2)是否存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列{an},a1=1,a2=2,對任意n∈N* , 有an+2=an , 數(shù)列{bn}滿足bn+1﹣bn=an(n∈N*),若數(shù)列 中的任意一項都在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,則滿足要求的b1的值為

查看答案和解析>>

同步練習(xí)冊答案