【題目】橢圓的上、下焦點(diǎn)分別為,,右頂點(diǎn)為B,且滿(mǎn)足
Ⅰ求橢圓的離心率e;
Ⅱ設(shè)P為橢圓上異于頂點(diǎn)的點(diǎn),以線(xiàn)段PB為直徑的圓經(jīng)過(guò)點(diǎn),問(wèn)是否存在過(guò)的直線(xiàn)與該圓相切?若存在,求出其斜率;若不存在,說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ)存在滿(mǎn)足條件的直線(xiàn),斜率為.
【解析】
根據(jù)可得,即可求出橢圓的離心率,
由已知得,故橢圓方程為,設(shè),求出點(diǎn)P的坐標(biāo),再求出線(xiàn)段PB為直徑的圓的圓心坐標(biāo),根據(jù)直線(xiàn)和圓的位置關(guān)系可得.
解:,右頂點(diǎn)為B,
為等腰三角形,
,
由,
橢圓的離心率.
由已知得,.
故橢圓方程為,設(shè)由,,
,,
,
,
又因?yàn)辄c(diǎn)P在橢圓上,故,
由以上兩式可得,
點(diǎn)P不在橢圓的頂點(diǎn),
,,
故,
設(shè)圓的圓心為,則,,
則圓的半徑,
假設(shè)存在過(guò)的直線(xiàn)滿(mǎn)足題設(shè)條件,并設(shè)該直線(xiàn)的方程為,
由相切可知,
即得,解得
故存在滿(mǎn)足條件的直線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn),直線(xiàn) .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線(xiàn),的直角坐標(biāo)方程以及曲線(xiàn)的參數(shù)方程;
(2)已知直線(xiàn)與曲線(xiàn)交于兩點(diǎn),直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在常數(shù),使得對(duì)定義域內(nèi)的任意,都有成立,則稱(chēng)函數(shù)在其定義域 上是“利普希茲條件函數(shù)”.
(1)若函數(shù)是“利普希茲條件函數(shù)”,求常數(shù)的最小值;
(2)判斷函數(shù)是否是“利普希茲條件函數(shù)”,若是,請(qǐng)證明,若不是,請(qǐng)說(shuō)明理由;
(3)若是周期為2的“利普希茲條件函數(shù)”,證明:對(duì)任意的實(shí)數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)平面向量分解定理的四個(gè)命題:
(1)一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;
(2)一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線(xiàn)性組合.
其中正確命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車(chē)已經(jīng)進(jìn)入千千萬(wàn)萬(wàn)的家庭.大部分的車(chē)主在購(gòu)買(mǎi)汽車(chē)時(shí),會(huì)在轎車(chē)或者中作出選擇,為了研究某地區(qū)哪種車(chē)型更受歡迎以及汽車(chē)一年內(nèi)的行駛里程,某汽車(chē)銷(xiāo)售經(jīng)理作出如下統(tǒng)計(jì):
購(gòu)買(mǎi)了轎車(chē)(輛) | 購(gòu)買(mǎi)了(輛) | |
歲以下車(chē)主 | ||
歲以下車(chē)主 |
(1)根據(jù)表,是否有的把握認(rèn)為年齡與購(gòu)買(mǎi)的汽車(chē)車(chē)型有關(guān)?
(2)圖給出的是名車(chē)主上一年汽車(chē)的行駛里程,求這名車(chē)主上一年汽車(chē)的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)用分層抽樣的方法從歲以上車(chē)主中抽取人,再?gòu)倪@人中隨機(jī)抽取人贈(zèng)送免費(fèi)保養(yǎng)券,求這人中至少有輛轎車(chē)的概率。
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),動(dòng)點(diǎn)P是圓M:上的任意一點(diǎn),線(xiàn)段NP的垂直平分線(xiàn)和半徑MP相交于點(diǎn)Q.
求的值,并求動(dòng)點(diǎn)Q的軌跡C的方程;
若圓的切線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P在圓柱的底面圓上,AB為圓的直徑,圓柱的表面積為20π,
(1)求異面直線(xiàn)與AP所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)求點(diǎn)A到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線(xiàn)、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com