【題目】下列函數(shù)在其定義域中,既是奇函數(shù)又是增函數(shù)的( )
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.
【答案】C
【解析】解:因y=x+1的圖象不關(guān)于原點(diǎn)對(duì)稱(chēng),所以不是奇函數(shù),不符合題意;
y=﹣x2在定義域R上為偶函數(shù),不符合題意;
因函數(shù)y=x|x|的定義域?yàn)镽,且(﹣x)|﹣x|=﹣x|x|,所以為奇函數(shù),
又y=x|x|= ,則函數(shù)y=x|x|在[0,+∞),(﹣∞,0)上單調(diào)遞增,
∵02=﹣02 , ∴該函數(shù)在定義域R上是增函數(shù),符合題意;
由于函數(shù)y=﹣ 是奇函數(shù),但在定義域(﹣∞,0)∪(0,+∞)上不是增函數(shù),不符合題意.
故選C.
利用函數(shù)奇偶性的定義判斷各個(gè)選項(xiàng)中的函數(shù)的奇偶性,化簡(jiǎn)后由基本初等函數(shù)的單調(diào)性,判斷函數(shù)在定義域上的單調(diào)性,從而得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一生物科研小組對(duì)升高溫度的多少與某種細(xì)菌種群存活數(shù)量之間的關(guān)系進(jìn)行分析研究,他們制作5 份相同的樣本并編號(hào)1、2、3、4、5,分別記錄它們同在下升高不同的溫度后的種群存活數(shù)量, 得到如下資料:
(1)若隨機(jī)選取2份樣本的數(shù)據(jù)來(lái)研究,求其編號(hào)不相鄰的概率;
(2)求出關(guān)于的線(xiàn)性回歸方程;
(3)利用(2)中所求出的回歸方程預(yù)測(cè)溫度升高15 時(shí)此種樣本中種菌群存活數(shù)量.
附: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn)M(﹣ ),N是圓C:(x﹣ )2+y2=16(C為圓心) 上的動(dòng)點(diǎn),MN的垂直平分線(xiàn)與NC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程C1;
(2)直線(xiàn)l與軌跡C1交于P,Q兩點(diǎn),與拋物線(xiàn)C2:x2=4y交于A,B兩點(diǎn),且拋物線(xiàn)C2在點(diǎn)A,B處的切線(xiàn)垂直相交于S,設(shè)點(diǎn)S到直線(xiàn)l的距離為d,試問(wèn):是否存在直線(xiàn)l,使得d= ?若存在,求直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)里約奧運(yùn)會(huì)的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為“體育迷”。已知“體育迷”中有10名女性。
(1)試求“體育迷”中的男性觀眾人數(shù);
(2)據(jù)此資料完成列聯(lián)表,你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
臨界值表供參考參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)定義在[0,1]上,并且同時(shí)滿(mǎn)足以下兩個(gè)條件的函數(shù)f(x)稱(chēng)為M函數(shù):
(i)對(duì)任意的x∈[0,1],恒有f(x)≥0;
(ii)當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
則下列四個(gè)函數(shù)中不是M函數(shù)的個(gè)數(shù)是( )
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x﹣1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知c>0,命題p:函數(shù)在R上單調(diào)遞減,命題q:不等式的解集是R,若為真命題, 為假命題,求c的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>0, 是R上的偶函數(shù).
(1)求a的值;
(2)證明f(x)在(0,+∞)上為增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓C1: 的離心率等于 ,拋物線(xiàn)C2:x2=2py(p>0)的焦點(diǎn)在橢圓C1的頂點(diǎn)上.
(1)求拋物線(xiàn)C2的方程;
(2)求過(guò)點(diǎn)M(﹣1,0)的直線(xiàn)l與拋物線(xiàn)C2交E、F兩點(diǎn),又過(guò)E、F作拋物線(xiàn)C2的切線(xiàn)l1、l2 , 當(dāng)l1⊥l2時(shí),求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={y|y=log2x,x≥4},B={y|y=( )x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com