【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.

【答案】(Ⅰ)見(jiàn)解析;

(Ⅱ)3.

【解析】

(Ⅰ)取中點(diǎn),連接、,根據(jù)線面平行的判定定理,得到平面平面,進(jìn)而可得平面

(Ⅱ)連接,根據(jù)題意得到是二面角的平面角,過(guò)點(diǎn),得到平面,是直線與平面所成角的平面角,再由題中數(shù)據(jù),即可求出結(jié)果.

(Ⅰ)取中點(diǎn),連接、

由于,,,,

從而平面平面

平面,

所以平面

(Ⅱ)連接

由于,,

是二面角的平面角,,是邊長(zhǎng)為的正三角形,且平面

平面,則平面平面

過(guò)點(diǎn),則,平面是直線與平面所成角的平面角.

由于分別是的中點(diǎn),則,從而,即直線與平面所成角的正切值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)設(shè)曲線在原點(diǎn)處切線與直線垂直,則a=______.

(2)已知等差數(shù)列中,已知,則=________________.

(3)若函數(shù),則__________

(4)曲線與直線軸圍成的圖形的面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 , ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時(shí), 都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過(guò)定點(diǎn)A0,1)和B-1,0);

③不論為何值時(shí), 都關(guān)于直線對(duì)稱;

④如果交于點(diǎn),則的最大值是1;

其中,所有正確的結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長(zhǎng)安,至齊. 齊去長(zhǎng)安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

年齡x

28

32

38

42

48

52

58

62

收縮壓單位

114

118

122

127

129

135

140

147

其中:,,

請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到

若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬(wàn)元)

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).

若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?

問(wèn):如果你是廠長(zhǎng),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn)A(a,0),B(0,b),C(2,2),其中a>0,b>0.

(1)若O是坐標(biāo)原點(diǎn),且四邊形OACB是平行四邊形,試求a,b的值.

(2)若A,B,C三點(diǎn)共線,試求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓軸交于、兩點(diǎn),動(dòng)直線)與軸、軸分別交于點(diǎn)、,與圓交于、兩點(diǎn)(點(diǎn)縱坐標(biāo)大于點(diǎn)縱坐標(biāo)).

1)若,點(diǎn)與點(diǎn)重合,求點(diǎn)的坐標(biāo);

2)若,求直線將圓分成的劣弧與優(yōu)弧之比;

3)若,設(shè)直線、的斜率分別為、,是否存在實(shí)數(shù)使得?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=cosxacosxsinxaR),且f .

1)求a的值;

2)求fx)的單調(diào)遞增區(qū)間;

3)求fx)在區(qū)間[0,]上的最小值及對(duì)應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案