【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,,中有3個(gè)點(diǎn)在橢圓:上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線(xiàn)與軸、軸分別交于、兩點(diǎn),設(shè)直線(xiàn),的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
【答案】(1);(2)證明見(jiàn)解析,.
【解析】
(1)根據(jù)橢圓的對(duì)稱(chēng)性可知,關(guān)于軸對(duì)稱(chēng)的,在橢圓上.分類(lèi)討論,當(dāng)在橢圓上時(shí),當(dāng)在橢圓上時(shí),分別求解,根據(jù)確定,即可.
(2)設(shè),,由題意可知,,設(shè)直線(xiàn)的方程為,與橢圓聯(lián)立,變形整理得,確定,,從而,直線(xiàn)的方程為,分別令、確定點(diǎn)與點(diǎn)的坐標(biāo),求直線(xiàn),的斜率分別為,,求解即可.
(1)∵,關(guān)于軸對(duì)稱(chēng).
∴這2個(gè)點(diǎn)在橢圓上,即①
當(dāng)在橢圓上時(shí),②
由①②解得,.
當(dāng)在橢圓上時(shí),③
由①③解得,.
又
∴,
∴橢圓的方程為.
(2)設(shè),,則.
因?yàn)橹本(xiàn)的斜率,又.
所以直線(xiàn)的斜率.
設(shè)直線(xiàn)的方程為,由題意知,.
由可得,
所以,.
由題意知,所以,所以直線(xiàn)的方程為,令,得,即,可得,
令,得,即,可得,
所以,即,因此,存在常數(shù)使得結(jié)論成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法:
①三條直線(xiàn)兩兩相交,則他們一定共面.
②存在兩兩相交的三個(gè)平面可以把空間分成9部分.
③如圖是正方體的平面展開(kāi)圖,則在這個(gè)正方體中,一定有平面且平面平面.
④四面體所有的棱長(zhǎng)都相等,則它的外接球表面積與內(nèi)切球表面積之比是9.
其中正確的是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,,,, ,為的中點(diǎn).
(1)平面平面
(2)在線(xiàn)段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)令
①當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;
②若時(shí),恒成立,求的所有取值集合與的關(guān)系;
(Ⅱ)記,是否存在,使得對(duì)任意的實(shí)數(shù),函數(shù)在上有且僅有兩個(gè)零點(diǎn)?若存在,求出滿(mǎn)足條件的最小正整數(shù),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓與軸的一個(gè)交點(diǎn).已知橢圓與直線(xiàn)相交于、兩點(diǎn),延長(zhǎng)與橢圓交于點(diǎn).
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,且,平面ABCD.
(1)求PA與平面PCD所成角的正弦值;
(2)棱PD上是否存在一點(diǎn)E,滿(mǎn)足?若存在,求AE的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若射線(xiàn) 與曲線(xiàn)交于,兩點(diǎn),與曲線(xiàn)交于,兩點(diǎn),求取最大值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)若,在上遞增,求的最大值;
(2)若,存在,使得對(duì)任意,都有恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com