【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,且,平面ABCD.
(1)求PA與平面PCD所成角的正弦值;
(2)棱PD上是否存在一點(diǎn)E,滿足?若存在,求AE的長(zhǎng);若不存在,說明理由.
【答案】(1);(2)不存在,詳見解析.
【解析】
(1)以AB,AD,AP所在的直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,根據(jù)空間向量夾角公式求出PA與平面PCD所成角的正弦值;
(2)根據(jù)空間向量夾角公式直接求解即可.
(1),平面ABCD,可以A為坐標(biāo)原點(diǎn),以AB,AD,AP所在的直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,從而,,.
設(shè)平面PCD的法向量為,則,
,取,得,,
平面PCD的一個(gè)法向量,
設(shè)直線PA與平面PCD的夾角為,
則.
(2),則,
,,
若,則,此方程無解,
故在棱PD上不存在一點(diǎn)E,滿足.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率等于.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點(diǎn)作直線交橢圓于兩點(diǎn),交軸于點(diǎn),若,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn),的“切比雪夫距離”,又設(shè)點(diǎn)及上任意一點(diǎn),稱的最小值為點(diǎn)到直線的“切比雪夫距離”,記作,給出下列三個(gè)命題:
①對(duì)任意三點(diǎn)、、,都有;
②已知點(diǎn)和直線:,則;
③到定點(diǎn)的距離和到的“切比雪夫距離”相等的點(diǎn)的軌跡是正方形.
其中正確的命題有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,,中有3個(gè)點(diǎn)在橢圓:上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)的直線與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸、軸分別交于、兩點(diǎn),設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面,為棱上一點(diǎn)(不與、重合),平面交棱于點(diǎn).
(1)求證:;
(2)若二面角的余弦值為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側(cè)棱底面ABCD,AB垂直于AD和BC,,且.M是棱SB的中點(diǎn).
(Ⅰ)求證:面SCD;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線.給出下列結(jié)論:
①曲線關(guān)于原點(diǎn)對(duì)稱;
②曲線上任意一點(diǎn)到原點(diǎn)的距離不小于1;
③曲線只經(jīng)過個(gè)整點(diǎn)(即橫縱坐標(biāo)均為整數(shù)的點(diǎn)).
其中,所有正確結(jié)論的序號(hào)是( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,,所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上動(dòng)點(diǎn)到點(diǎn)距離比它到直線距離少1.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)記動(dòng)點(diǎn)的軌跡為曲線,過點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn),延長(zhǎng),,與曲線交于,兩點(diǎn),若直線,的斜率分別為,,試探究是否為定值?若為定值,請(qǐng)求出定值,若不為定值,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com