【題目】已知橢圓E的方程: ,P為橢圓上的一點(點P在第三象限上),圓P 以點P為圓心,且過橢圓的左頂點M與點C(﹣2,0),直線MP交圓P與另一點N.
(1)求圓P的標(biāo)準(zhǔn)方程;
(2)若點A在橢圓E上,求使得 取得最小值的點A的坐標(biāo);
(3)若過橢圓的右頂點的直線l上存在點Q,使∠MQN為鈍角,求直線l斜率的取值范圍.
【答案】
(1)解:橢圓E的方程: ,得M(﹣10,0),C(﹣2,0))
設(shè)點P(m,n),則有 ,
又: ,∴n=﹣4,即P(﹣6,﹣4),)
所以
所以圓P的標(biāo)準(zhǔn)方程為(x+6)2+(y+4)2=32
(2)解:∵P為MN的中點,可得N(﹣2,﹣8)
設(shè)A(x,y),∴ ,∴ ∴ ,
得x=﹣6,y=﹣4時,∴ 最小
經(jīng)檢驗,點A在橢圓 上∴A(﹣6,﹣4)
(3)解:設(shè)直線l:y=k(x﹣10),即直線與圓相交
所以圓心P到直線l的距離
得
得
【解析】(1)設(shè)點P(m,n),利用 ,以及橢圓方程求出m,n,然后求出半徑,即可求解圓的方程.(2)由題意求出N的坐標(biāo),設(shè)A(x,y),表示出 ,求出最小值時點A的坐標(biāo).(3)設(shè)直線l:y=k(x﹣10),利用直線與圓相交,圓心P到直線l的距離小于半徑,列出不等式求解即可.
【考點精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖像如圖所示,為最高點,該圖像與軸交于點與軸交于點,且的面積為.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖像向右平移個單位,再將所得圖像上各點的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求在上的單調(diào)遞增區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點E和F分別為BC和A1C的中點.
(1)求證:EF∥平面A1B1BA;
(2)求直線A1B1與平面BCB1所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
相關(guān)公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不超過實數(shù)x的最大整數(shù)稱為x整數(shù)部分,記作[x].已知f(x)=cos([x]-x),給出下列結(jié)論:
①f(x)是偶函數(shù);
②f(x)是周期函數(shù),且最小正周期為π;
③f(x)的單調(diào)遞減區(qū)間為[k,k+1)(k∈Z);
④f(x)的值域為(cos1,1].
其中正確命題的序號是______(填上所以正確答案的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).若曲線在點處的切線方程為
(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),且在處的切線斜率為.
(1)求的值,并討論在上的單調(diào)性;
(2)設(shè)函數(shù) ,其中,若對任意的總存在,使得成立,求的取值范圍
(3)已知函數(shù),試判斷在內(nèi)零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com