在極坐標(biāo)系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個(gè)交點(diǎn)在極軸上,求a的值.
曲線C1的直角坐標(biāo)方程是x+y=1,曲線C2的普通方程是直角坐標(biāo)方程x2+y2=a2,因?yàn)榍C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個(gè)交點(diǎn)在極軸上,所以C1與x軸交點(diǎn)橫坐標(biāo)與a值相等,由y=0,x=,知a=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線的參數(shù)方程是:是參數(shù)).
(1)將曲線和曲線的方程轉(zhuǎn)化為普通方程;
(2)若曲線與曲線相交于兩點(diǎn),求證;
(3)設(shè)直線交于兩點(diǎn),且為常數(shù)),過弦的中點(diǎn)作平行于軸的直線交曲線于點(diǎn),求證:的面積是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別是、,直線與曲線相交于兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,直線的方程是,以極點(diǎn)為原
點(diǎn),以極軸為軸的正半軸建立直角坐標(biāo)系,在直角坐標(biāo)系中,直線的方程是.如果直線
垂直,則常數(shù)         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)為原點(diǎn)、極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C截得的線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系中,求點(diǎn)到直線ρsinθ=2的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半徑為1的圓的一條直徑,C是此圓上任意一點(diǎn),作射線AC,在AC上存在點(diǎn)P,使得AP·AC=1,以A為極點(diǎn),射線AB為極軸建立極坐標(biāo)系.

(1)求以AB為直徑的圓的極坐標(biāo)方程;
(2)求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程;
(3)求點(diǎn)P的軌跡在圓內(nèi)部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,圓:上到直線距離為1的點(diǎn)的個(gè)數(shù)為(   )
A.1 B.2C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

查看答案和解析>>

同步練習(xí)冊答案